0
Research Papers

Discrete Adjoint Method for the Sensitivity Analysis of Flexible Multibody Systems

[+] Author and Article Information
Alfonso Callejo, Valentin Sonneville, Olivier A. Bauchau

Department of Aerospace Engineering,
University of Maryland,
College Park, MD 20742

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received May 17, 2018; final manuscript received August 15, 2018; published online January 7, 2019. Assoc. Editor: Radu Serban.

J. Comput. Nonlinear Dynam 14(2), 021001 (Jan 07, 2019) (11 pages) Paper No: CND-18-1217; doi: 10.1115/1.4041237 History: Received May 17, 2018; Revised August 15, 2018

The gradient-based design optimization of mechanical systems requires robust and efficient sensitivity analysis tools. The adjoint method is regarded as the most efficient semi-analytical method to evaluate sensitivity derivatives for problems involving numerous design parameters and relatively few objective functions. This paper presents a discrete version of the adjoint method based on the generalized-alpha time integration scheme, which is applied to the dynamic simulation of flexible multibody systems. Rather than using an ad hoc backward integration solver, the proposed approach leads to a straightforward algebraic procedure that provides design sensitivities evaluated to machine accuracy. The approach is based on an intrinsic representation of motion that does not require a global parameterization of rotation. Design parameters associated with rigid bodies, kinematic joints, and beam sectional properties are considered. Rigid and flexible mechanical systems are investigated to validate the proposed approach and demonstrate its accuracy, efficiency, and robustness.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Nikravesh, P. E. , 1988, Computer-Aided Analysis of Mechanical Systems, Prentice Hall, Englewood Cliffs, NJ.
Géradin, M. , and Cardona, A. , 2001, Flexible Multibody System: A Finite Element Approach, Wiley, New York.
Bauchau, O. A. , 2011, Flexible Multibody Dynamics, Springer, New York.
Newman, J. C. , Anderson, W. K. , and Whitfield, D. L. , 1998, “ Multidisciplinary Sensitivity Derivatives Using Complex Variables,” Mississippi State University, MS, Technical Report No. MSSU-EIRS-ERC-98-08.
Martins, J. R. R. A. , Sturdza, P. , and Alonso, J. J. , 2003, “ The Complex-Step Derivative Approximation,” Trans. Math. Software, 29(3), pp. 245–262. [CrossRef]
Bestle, D. , and Eberhard, P. , 1992, “ Analyzing and Optimizing Multibody Systems,” J. Struct. Mech., 20(1), pp. 67–92.
Wang, L. , Diskin, B. , Biedron, R. , Nielsen, E. J. , and Bauchau, O. A. , 2017, “ Sensitivity Analysis of Multidisciplinary Rotorcraft Simulations,” AIAA Paper No. 2017-1670.
Krishnaswami, P. , and Bhatti, M. A. , 1984, “ A General Approach for Design Sensitivity Analysis of Constrained Dynamic Systems,” ASME Paper No. 84-DET-132.
Chang, C. O. , and Nikravesh, P. E. , 1985, “ Optimal Design of Mechanical Systems With Constraint Violation Stabilization Method,” J. Mech. Transm. Autom. Des., 107(4), pp. 493–498. [CrossRef]
Haug, E. J. , and Arora, J. S. , 1978, “ Design Sensitivity Analysis of Elastic Mechanical Systems,” Comput. Methods Appl. Mech. Eng., 15(1), pp. 35–62. [CrossRef]
Haug, E. J. , and Arora, J. S. , 1979, Applied Optimal Design: Mechanical and Structural Systems, Wiley, New York.
Cao, Y. , Li, S. , and Petzold, L. , 2002, “ Adjoint Sensitivity Analysis for Differential-Algebraic Equations: Algorithms and Software,” J. Comput. Appl. Math., 149(1), pp. 171–191. [CrossRef]
Sonneville, V. , and Brüls, O. , 2014, “ Sensitivity Analysis for Multibody Systems Formulated on a Lie Group,” Multibody Syst. Dyn., 31(1), pp. 47–67. [CrossRef]
Dopico, D. , Zhu, Y. T. , Sandu, A. , and Sandu, C. , 2015, “ Direct and Adjoint Sensitivity Analysis of Ordinary Differential Equation Multibody Formulations,” ASME J. Comput. Nonlinear Dyn., 10(1), p. 011012. [CrossRef]
Nachbagauer, K. , Oberpeilsteiner, S. , Sherif, K. , and Steiner, W. , 2015, “ The Use of the Adjoint Method for Solving Typical Optimization Problems in Multibody Dynamics,” ASME J. Comput. Nonlinear Dyn., 10(6), p. 061011. [CrossRef]
Boopathy, K. , and Kennedy, G. , 2017, “ Adjoint-Based Derivative Evaluation Methods for Flexible Multibody Systems With Rotorcraft Applications,” AIAA Paper No. 2017-1671.
Lauß, T. , Oberpeilsteiner, S. , Steiner, W. , and Nachbagauer, K. , 2017, “ The Discrete Adjoint Gradient Computation for Optimization Problems in Multibody Dynamics,” ASME J. Comput. Nonlinear Dyn., 12(3), p. 031016. [CrossRef]
Lauß, T. , Oberpeilsteiner, S. , Steiner, W. , and Nachbagauer, K. , 2018, “ The Discrete Adjoint Method for Parameter Identification in Multibody System Dynamics,” Multibody Syst. Dyn., 42(4), pp. 397–410. [CrossRef] [PubMed]
Nielsen, E. J. , and Diskin, B. , 2013, “ Discrete Adjoint-Based Design for Unsteady Turbulent Flows on Dynamic Overset Unstructured Grids,” AIAA J., 51(6), pp. 1355–1373. [CrossRef]
Bauchau, O. A. , Bottasso, C. L. , and Nikishkov, Y. G. , 2001, “ Modeling Rotorcraft Dynamics With Finite Element Multibody Procedures,” Math. Comput. Model., 33(10–11), pp. 1113–1137. [CrossRef]
Sonneville, V. , Cardona, A. , and Brüls, O. , 2014, “ Geometrically Exact Beam Finite Element Formulated on the Special Euclidean Group SE(3),” Comput. Methods Appl. Mech. Eng., 268, pp. 451–474. [CrossRef]
Sonneville, V. , and Brüls, O. , 2014, “ A Formulation on the Special Euclidean Group for Dynamic Analysis of Multibody Systems,” ASME J. Comput. Nonlinear Dyn., 9(4), p. 041002.
Simo, J. C. , and Vu-Quoc, L. , 1988, “ On the Dynamics in Space of Rods Undergoing Large Motions—A Geometrically Exact Approach,” Comput. Methods Appl. Mech. Eng., 66(2), pp. 125–161. [CrossRef]
Borri, M. , and Merlini, T. , 1986, “ A Large Displacement Formulation for Anisotropic Beam Analysis,” Meccanica, 21(1), pp. 30–37. [CrossRef]
Hodges, D. H. , 1990, “ A Review of Composite Rotor Blade Modeling,” AIAA J., 28(3), pp. 561–565. [CrossRef]
Géradin, M. , and Rixen, D. , 1995, “ Parameterization of Finite Rotations in Computational Dynamics: A Review,” Rev. Eur. Des Élém. Finis, 4(5–6), pp. 497–553. [CrossRef]
Borri, M. , Trainelli, L. , and Bottasso, C. L. , 2000, “ On Representations and Parameterizations of Motion,” Multibody Syst. Dyn., 4(2/3), pp. 129–193. [CrossRef]
Bauchau, O. A. , and Li, L. H. , 2011, “ Tensorial Parameterization of Rotation and Motion,” ASME J. Comput. Nonlinear Dyn., 6(3), p. 0310071.
Han, S. L. , and Bauchau, O. A. , 2016, “ Manipulation of Motion Via Dual Entities,” Nonlinear Dyn., 85(1), pp. 509–524. [CrossRef]
Müller, A. , 2016, “ A Note on the Motion Representation and Configuration Update in Time Stepping Schemes for the Constrained Rigid Body,” BIT Numer. Math., 56(3), pp. 995–1015. [CrossRef]
Han, S. L. , and Bauchau, O. A. , 2015, “ Nonlinear Three-Dimensional Beam Theory for Flexible Multibody Dynamics,” Multibody Syst. Dyn., 34(3), pp. 211–242. [CrossRef]
Bottasso, C. L. , Bauchau, O. A. , and Cardona, A. , 2007, “ Time-Step-Size-Independent Conditioning and Sensitivity to Perturbations in the Numerical Solution of Index-Three Differential Algebraic Equations,” SIAM J. Sci. Comput., 29(1), pp. 397–414. [CrossRef]
Bauchau, O. A. , Epple, A. , and Bottasso, C. L. , 2009, “ Scaling of Constraints and Augmented Lagrangian Formulations in Multibody Dynamics Simulations,” ASME J. Comput. Nonlinear Dyn., 4(2), p. 0210071. [CrossRef]
Arnold, M. , Brüls, O. , and Cardona, A. , 2015, “ Error Analysis of Generalized-α Lie Group Time Integration Methods for Constrained Mechanical Systems,” Numer. Math., 129(1), pp. 149–179. [CrossRef]
Brüls, O. , Cardona, A. , and Arnold, M. , 2012, “ Lie Group Generalized-Alpha Time Integration of Constrained Flexible Multibody Systems,” Mech. Mach. Theory, 48, pp. 121–137. [CrossRef]
Callejo, A. , Bauchau, O. , Diskin, B. , and Wang, L. , 2017, “ Sensitivity Analysis of Beam Cross-Section Stiffness Using Adjoint Method,” ASME Paper No. DETC2017-67846.

Figures

Grahic Jump Location
Fig. 1

Geometrically exact beam element

Grahic Jump Location
Fig. 2

Quarter-car suspension

Grahic Jump Location
Fig. 3

Quarter-car sensitivity derivative dψ/dk versus relative perturbation size Δk/k

Grahic Jump Location
Fig. 5

Rotating beam sensitivity derivative dψ/dD55 versus relative perturbation size ΔD55/D55

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In