Fishman,
G.
, 2013, Monte Carlo: Concepts, Algorithms, and Applications,
Springer Science & Business Media, New York.

Niederreiter,
H.
, 1992, Random Number Generation and quasi-Monte Carlo Methods, Vol.
63,
Society of Indian Automobile Manufacturers, Philadelphia, PA.

McKay,
M. D.
,
Beckman,
R. J.
, and
Conover,
W. J.
, 1979, “
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code,” Technometrics,
21(2), pp. 239–245.

Xiu,
D.
, 2010, Numerical Methods for Stochastic Computations: A Spectral Method Approach,
Princeton University Press, Princeton, NJ.

Duan,
J.
, 2015, An Introduction to Stochastic Dynamics, Vol.
51,
Cambridge University Press, Cambridge, UK.

Gao,
T.
,
Duan,
J.
, and
Li,
X.
, 2016, “
Fokker–Planck Equations for Stochastic Dynamical Systems With Symmetric Lévy Motions,” Appl. Math. Comput.,
278, pp. 1–20.

[CrossRef]
Wiener,
N.
, 1938, “
The Homogeneous Chaos,” Am. J. Math.,
60(4), pp. 897–936.

[CrossRef]
Xiu,
D.
, and
Karniadakis,
G. E.
, 2002, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations,” SIAM J. Sci. Comput.,
24(2), pp. 619–644.

[CrossRef]
Prabhakar,
A.
,
Fisher,
J.
, and
Bhattacharya,
R.
, 2010, “
Polynomial Chaos-Based Analysis of Probabilistic Uncertainty in Hypersonic Flight Dynamics,” AIAA J. Guid., Control, Dyn.,
33(1), pp. 222–234.

[CrossRef]
Madankan,
R.
,
Singla,
P.
,
Singh,
T.
, and
Scott,
P. D.
, 2013, “
Polynomial-Chaos-Based Bayesian Approach for State and Parameter Estimations,” J. Guid., Control, Dyn.,
36(4), pp. 1058–1074.

[CrossRef]
Hosder,
S.
, and
Walters,
R. W.
, 2010, “
Non-Intrusive Polynomial Chaos Methods for Uncertainty Quantification in Fluid Dynamics,” AIAA Paper No. AIAA 2010–129.

Ghanem,
R. G.
, and
Spanos,
P. D.
, 1991, “
Stochastic Finite Element Method: Response Statistics,” Stochastic Finite Elements: A Spectral Approach,
Springer, New York, pp. 101–119.

Xiu,
D.
, and
Hesthaven,
J. S.
, 2005, “
High-Order Collocation Methods for Differential Equations With Random Inputs,” SIAM J. Sci. Comput.,
27(3), pp. 1118–1139.

[CrossRef]
Millman,
D.
,
King,
P.
,
Maple,
R.
, and
Beran,
P.
, 2004, “
Predicting Uncertainty Propagation in a Highly Nonlinear System With a Stochastic Projection Method,” AIAA Paper No: AIAA 2004-1613.

Desai,
A.
,
Witteveen,
J. A.
, and
Sarkar,
S.
, 2013, “
Uncertainty Quantification of a Nonlinear Aeroelastic System Using Polynomial Chaos Expansion With Constant Phase Interpolation,” ASME J. Vib. Acoust.,
135(5), p. 051034.

[CrossRef]
Thanusha,
M.
, and
Sarkar,
S.
, 2016, “
Uncertainty Quantification of Subcritical Nonlinear Aeroelastic System Using Integrated Interpolation Method and Polynomial Chaos Expansion,” Procedia Eng.,
144, pp. 982–989.

[CrossRef]
Madankan,
R.
,
Singla,
P.
, and
Singh,
T.
, 2013, “
Application of Conjugate Unscented Transform in Source Parameters Estimation,” American Control Conference (ACC), pp. 2448–2453.

Adurthi,
N.
,
Singla,
P.
, and
Singh,
T.
, 2018, “
Conjugate Unscented Transformation: Applications to Estimation and Control,” ASME J. Dyn. Syst., Meas., Control,
140(3), p. 030907.

[CrossRef]
Congedo,
P. M.
,
Abgrall,
R.
, and
Geraci,
G.
, 2011, “
On the Use of the Sparse Grid Techniques Coupled With Polynomial Chaos,” HAL INRIA, Bordeaux, France, Report No. RR-7579

https://hal.inria.fr/inria-00579205.

Heiss,
F.
, and
Winschel,
V.
, 2008, “
Likelihood Approximation by Numerical Integration on Sparse Grids,” J. Econometrics,
144(1), pp. 62–80.

[CrossRef]
Smolyak,
S. A.
, 1963, “
Quadrature and Interpolation Formulas for Tensor Products of Certain Classes of Functions,” Dokl. Akad. Nauk SSSR,
148(5), pp. 1042–1045.

Wasilkowski,
G. W.
, and
Wozniakowski,
H.
, 1995, “
Explicit Cost Bounds of Algorithms for Multivariate Tensor Product Problems,” J. Complexity,
11(1), pp. 1–56.

[CrossRef]
Jia,
B.
,
Xin,
M.
, and
Cheng,
Y.
, 2011, “
Sparse Gauss-Hermite Quadrature Filter With Application to Spacecraft Attitude Estimation,” J. Guid., Control, Dyn.,
34(2), pp. 367–379.

[CrossRef]
Fung,
Y. C.
, 2008, An Introduction to the Theory of Aeroelasticity,
Courier Dover Publications, Mineola, NY.

Lee,
B.
,
Gong,
L.
, and
Wong,
Y.
, 1997, “
Analysis and Computation of Nonlinear Dynamic Response of a Two-Degree-of-Freedom System and Its Application in Aeroelasticity,” J. Fluids Struct.,
11(3), pp. 225–246.

[CrossRef]
Lee,
B.
,
Jiang,
L.
, and
Wong,
Y.
, 1999, “
Flutter of an Airfoil With a Cubic Restoring Force,” J. Fluids Struct.,
13(1), pp. 75–101.

[CrossRef]
Petras,
K.
, 2000, “
On the Smolyak Cubature Error for Analytic Functions,” Adv. Comput. Math.,
12(1), pp. 71–93.

[CrossRef]