Benosman,
M.
, and
Vey,
G. L.
, 2004, “
Control of Flexible Manipulators: A Survey,” Robotica.,
22(5), pp. 533–545.

[CrossRef]
Dwivedy,
S. K.
, and
Eberhard,
P.
, 2006, “
Dynamic Analysis of Flexible Manipulators, a Literature Review,” Mech. Mach. Theory.,
41(7), pp. 749–777.

[CrossRef]
Schiehlen,
W.
, 1997, “
Multibody System Dynamics: Roots and Perspectives,” Multibody Syst. Dyn.,
1(2), pp. 149–188.

[CrossRef]
Isukapalli,
S. S.
, 1999, “
Uncertainty Analysis of Transport-Transformation Models,” Ph.D. dissertation, The State University of New Jersey, New Brunswick, NJ.

Fishman,
G. S.
, 1996, “Monte Carlo: Concepts, Algorithms, and Applications,”
Springer-Verlag,
New York.

Jensen,
H. A.
, and
Valdebenito,
M. A.
, 2009, “
Reliability-Based Optimization of Stochastic Systems Using Line Search,” Comput. Methods Appl. Mech. Eng.,
198(49–52), pp. 3915–3924.

[CrossRef]
Mysers,
R. H.
, and
Montgomery,
D. C.
, 2008, “
Response Surface Methodology: Process and Product Optimization Using Designed Experiments,” J. Stat. Plan. Inference,
59(3), pp. 284–286.

Ghanem,
R.
, and
Spanos,
P.
, 1990, “
Polynomial Chaos in Stochastic Finite Element,” ASME J. Appl. Mech.,
57(1), pp. 197–202.

[CrossRef]
Xiu,
D.
, and
Karniadakis,
G. E.
, 2003, “
Modeling Uncertainty in Flow Simulations Via Generalized Polynomial Chaos,” J. Comput. Phys.,
187(1), pp. 137–167.

[CrossRef]
Kewlani,
G.
, and
Iagnemma,
K.
, 2008, “
A Stochastic Response Surface Approach to Statistical Prediction of Mobile Robot Mobility,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, Sept. 22–26, pp. 2234–2239.

Wu,
J. L.
,
Luo,
Z.
,
Zhang,
Y. Q.
,
Zhang,
N.
, and
Chen,
L.
, 2013, “
Interval Uncertain Method for Multibody Mechanical Systems Using Chebyshev Inclusion Functions,” Int. J. Numer. Methods Eng.,
95(7), pp. 608–630.

[CrossRef]
Wang,
Z.
,
Tian,
Q.
, and
Hu,
H. Y.
, 2016, “
Dynamics of Spatial Rigid–Flexible Multibody Systems With Uncertain Interval Parameters,” Nonlinear Dyn.,
84(2), pp. 527–548.

[CrossRef]
Schmitt,
K. P.
,
Anitescu,
M.
, and
Negrut,
D.
, 2010, “
Efficient Sampling for Spatial Uncertainty Quantification in Multibody System Dynamics Applications,” Int. J. Numer. Methods Eng.,
80(5), pp. 537–564.

[CrossRef]
Batou,
A.
, and
Soize,
C.
, 2012, “
Rigid Multibody System Dynamics With Uncertain Rigid Bodies,” Multibody Syst. Dyn.,
27(3), pp. 285–319.

[CrossRef]
Sandu,
A.
,
Sandu,
C.
, and
Ahmadian,
M.
, 2006, “
Modeling Multibody Systems With Uncertainties—Part I: Theoretical and Computational Aspects,” Multibody Syst. Dyn.,
15(4), pp. 369–391.

[CrossRef]
Sandu,
C.
,
Sandu,
A.
, and
Ahmadian,
M.
, 2006, “
Modeling Multibody Systems With Uncertainties—Part II: Numerical Applications,” Multibody Syst. Dyn.,
15(3), pp. 241–262.

[CrossRef]
Wang,
S. X.
,
Wang,
Y. H.
, and
He,
B. Y.
, 2008, “
Dynamic Modeling of Flexible Multibody Systems With Parameter Uncertainty,” Chaos Solitons Fractals,
36(3), pp. 605–611.

[CrossRef]
Wu,
J. L.
,
Luo,
Z.
,
Zhang,
N.
, and
Zhang,
Y. Q.
, 2016, “
Dynamic Computation of Flexible Multibody System With Uncertain Material Properties,” Nonlinear Dyn.,
85(2), pp. 1231–1254.

[CrossRef]
Shabana,
A. A.
, 1997, “
Flexible Multibody Dynamics Review of past and Recent Developments,” Multibody Syst. Dyn.,
1(2), pp. 189–222.

[CrossRef]
Gerstmayr,
J.
,
Sugiyama,
H.
, and
Mikkola,
A.
, 2013, “
Review on the Absolute Nodal Coordinate Formulation for Large Deformation Analysis of Multibody Systems,” ASME J. Comput. Nonlinear Dyn.,
8(3), p. 031016.

[CrossRef]
Eberhard,
P.
, and
Schiehlen,
W.
, 2006, “
Computational Dynamics of Multibody Systems History, Formalisms, and Applications,” ASME J. Comput. Nonlinear Dyn.,
1(1), pp. 3–12.

[CrossRef]
Sun,
J. L.
,
Tian,
Q.
, and
Hu,
H. Y.
, 2017, “
Topology Optimization Based on Level Set for a Flexible Multibody System Modeled Via ANCF,” Struct. Multidiscip. Opt.,
55(4), pp. 1159–1177.

[CrossRef]
Tian,
Q.
,
Lou,
J.
, and
Mikkola,
A.
, 2017, “
A New Elastohydrodynamic Lubricated Spherical Joint Model for Rigid-Flexible Multibody Dynamics,” Mech. Mach. Theory.,
107, pp. 210–228.

[CrossRef]
Patel,
M.
,
Orzechowski,
G.
,
Tian,
Q.
, and
Shabana,
A. A.
, 2016, “
A New Multibody System Approach for Tire Modeling Using ANCF Finite Elements,” Proc. Inst. Mech. Eng. K: J Multibody Dyn.,
230(1), pp. 69–842.

O'Brien,
J.
,
F., Jafari
,
F.
, and
Wen,
J. T.
, 2006, “
Determination of Unstable Singularities in Parallel Robots With N Arms,” IEEE Trans. Rob.,
22(1), pp. 160–167.

[CrossRef]
Yang,
Y.
, and
O'Brien,
J. F.
, 2009, “
A Geometric Approach for the Design of Singularity-Free Parallel Robots,” IEEE International Conference on Robotics Automation (ICRA), Kobe, Japan, May 12–17, pp. 1801–1806.

Karimi,
A.
,
Masouleh,
M. T.
, and
Cardou,
P.
, 2014, “
Singularity-Free Workspace Analysis of General 6-U P S Parallel Mechanisms Via Convex Optimization,” Mech. Mach. Theory,
80, pp. 17–34.

[CrossRef]
Yang,
Y.
, and
O'Brien,
J. F.
, 2008, “
Finding Unmanipulable Singularities in Parallel Mechanisms Using Jacobian Decomposition,” J. Intell. Rob. Syst.,
53(1), pp. 3–19.

[CrossRef]
Cha,
S. H.
,
Lasky,
T. A.
, and
Velinsky,
S. A.
, 2009, “
Determination of the Kinematically Redundant Active Prismatic Joint Variable Ranges of a Planar Parallel Mechanism for Singularity-Free Trajectories,” Mech. Mach. Theory,
44(5), pp. 1032–1044.

[CrossRef]
Behbahani,
A. H.
,
Kim,
D.
,
Stupar,
P.
,
Denatale,
J.
, and
M'Closkey,
R. T.
, 2017, “
Tailored Etch Profiles for Wafer-Level Frequency Tuning of Axisymmetric Resonators,” J. Mems.,
26(2), pp. 333–343.

[CrossRef]
Trusov,
A. A.
,
Prikhodko,
I. P.
,
Zotov,
S. A.
, and
Shkel,
A. M.
, 2011, “
Low-Dissipation Silicon Tuning Fork Gyroscopes for Rate and Whole Angle Measurements,” IEEE Sens. J.,
11(11), pp. 2763–2770.

[CrossRef]
Behbahani,
A. H.
, and
M'Closkey,
R. T.
, 2017, “
Frequency Analysis of a Uniform Ring Perturbed by Point Masses and Springs,” J. Sound Vib.,
397, pp. 204–221.

[CrossRef]
Ge,
H. H.
,
Behbahani,
A. H.
, and
M'Closkey,
R. T.
, 2018, “
MEMS Gyro Drift Compensation Using Multiple Rate Measurements Derived From a Single Resonator,” IEEE/ION Position, Location and Navigation Symposium (PLANS), Monterey, CA, Apr. 23–26, pp. 288–293.

Jain,
A. K.
,
Murty,
M. N.
, and
Fylnn,
P. K.
, 1999, “
Data Clustering: A Review,” ACM Comput. Surv.,
31(3), pp. 264–323.

[CrossRef]
Neal,
R. M.
, 2000, “
Markov Chain Sampling Methods for Dirichlet Process Mixture Models,” J. Comput. Graph. Stat.,
9(2), pp. 249–265.

Nachbagauer, K.
, 2014, “
State of the Art of ANCF Elements Regarding Geometric Description, Interpolation Strategies, Definition of Elastic Forces, Validation and the Locking Phenomenon in Comparison with Proposed Beam Finite Elements,” Arch. Comput. Meth. Eng.,
21(3), pp. 293–319.

[CrossRef]
Shabana,
A. A.
, and
Yakoub,
R. Y.
, 2000, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory,” ASME J. Mech. Des.,
123(4), pp. 606–613.

[CrossRef]
Dufva,
K. E.
,
Sopanen,
J. T.
, and
Mikkola,
A. M.
, 2005, “
A Two-Dimensional Shear Deformable Beam Element Based on the Absolute Nodal Coordinate formulation,” J. Sound Vib.,
280(3), pp. 719–738.

[CrossRef]
Sugiyama,
H.
, and
Suda,
Y.
, 2007, “
A Curved Beam Element in the Analysis of Flexible Multi-Body Systems Using the Absolute Nodal Coordinates,” Proc. Inst. Mech. Eng. K: J Multibody Dyn.,
221(2), pp. 219–231.

Dufva,
K.
, and
Shabana,
A. A.
, 2005, “
Analysis of Thin Plate Structures Using the Absolute Nodal Coordinate Formulation,” Proc. Inst. Mech. Eng. K: J Multibody Dyn.,
219(4), pp. 345–355.

Jalon,
J.
, and
Bayo,
E.
, 2012, Kinematic and Dynamic Simulation of Multibody Systems,
Springer,
Berlin.

Jalón,
J. G. D.
, 2007, “
Twenty-Five Years of Natural Coordinates,” Multibody Syst. Dyn.,
18(1), pp. 15–33.

[CrossRef]
García-Vallejo,
D.
,
Escalona,
J. L.
,
Mayo,
J.
, and
Domínguez,
J.
, 2003, “
Describing Rigid-Flexible Multibody Systems Using Absolute Coordinates,” Nonlinear Dyn.,
34(1/2), pp. 75–94.

[CrossRef]
Kallenberg,
O.
, 2002, Foundations of Modern Probability,
Springer-Verlag, New York.

Erdélyi,
A.
,
Magnus,
W.
,
Oberhettinger,
F.
, and
Tricomi,
F. G.
, 1955, Higher Transcendental Functions, II,
McGraw-Hill, Springer-Verlag, New York.

Tian,
Q.
,
Zhang,
Y. Q.
,
Chen,
L. P.
, and
Yang,
J.
, 2009, “
An Efficient Hybrid Method for Multibody Dynamics Simulation Based on Absolute Nodal Coordinate Formulation,” ASME J. Comput. Nonlinear Dyn.,
4(2), p. 021009.

[CrossRef]
Shabana,
A. A.
, and
Hussein,
B.
, 2009, “
A Two-Loop Sparse Matrix Numerical Integration Procedure for the Solution of Differential/Algebraic Equations: Application to Multibody Systems,” J. Sound Vib.,
327(3–5), pp. 557–563.

[CrossRef]
Hussein,
B.
, and
Shabana,
A. A.
, 2011, “
Sparse Matrix Implicit Numerical Integration of the Stiff Differential/Algebraic Equation: Implementation,” Nonlinear Dyn.,
65(4), pp. 369–382.

[CrossRef]
Chung,
J.
, and
Hulbert,
G.
, 1993, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method,” ASME J. Appl. Mech.,
60(2), pp. 371–375.

[CrossRef]
Hussein,
B.
,
Negrut,
D.
, and
Shabana,
A. A.
, 2008, “
Implicit and Explicit Integration in the Solution of the Absolute Nodal Coordinate Differential/Algebraic Equations,” Nonlinear Dyn.,
54(4), pp. 283–296.

[CrossRef]
Arnold,
M.
, and
Brüls,
O.
, 2007, “
Convergence of the Generalized-α Scheme for Constrained Mechanical Systems,” Multibody Syst. Dyn.,
18(2), pp. 185–202.

[CrossRef]
Tian,
Q.
,
Zhang,
Y.
,
Chen,
L.
, and
Yang,
J.
, 2010, “
Simulation of Planar Flexible Multibody Systems With Clearance and Lubricated Revolute Joints,” Nonlinear Dyn.,
60(4), pp. 489–511.

[CrossRef]
Tian,
Q.
,
Zhang,
Y. Q.
,
Chen,
L. P.
, and
Flores,
P.
, 2009, “
Dynamics of Spatial Flexible Multibody Systems With Clearance and Lubricated Spherical Joints,” Comput. Struct.,
87(13–14), pp. 913–929.

[CrossRef]
Tian,
Q.
,
Paulo,
F.
, and
Lankarani,
H.
, 2018, “
A Comprehensive Survey of the Analytical, Numerical and Experimental Methodologies for Dynamics of Multibody Mechanical Systems With Clearance or Imperfect Joints,” Mech. Mach. Theory,
122, pp. 1–57.

[CrossRef]
Liu,
C.
,
Tian,
Q.
, and
Hu,
H. Y.
, 2012, “
Dynamics and Control of a Spatial Rigid-Flexible Multibody System With Multiple Cylindrical Clearance Joints,” Mech. Mach. Theory,
52, pp. 106–129.

[CrossRef]
Fedoryuk,
M. V.
, 1994, “
Hermite Functions,” Hazewinkel, Michiel, Encyclopedia of Mathematics,
Springer Science, New York.

Hartigan,
J. A.
, and
Wong,
M. A.
, 1979, “
Algorithm as 136: A K-Means Clustering Algorithm,” J. R. Stat. Soc.,
28(1), pp. 100–108.

Moon,
T. K.
, 1996, “
The Expectation-Maximization Algorithm,” IEEE Sig. Proc. Mag.,
13(6), pp. 47–60.

[CrossRef]
Ester,
M.
, 1996, “
A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases With Noise,” Second International Conference on Knowledge Discovery in Data Mining, Portland, OR, Aug. 2–4, pp. 226–231.

Jensen,
F. V.
, 1996, “
An Introduction to Bayesian Networks,” Practitioner's Knowledge Representation,
Springer,
Berlin, pp. 1–5.

Antoniak,
C. E.
, 1974, “
Mixtures of Dirichlet Processes With Applications to Bayesian Nonparametric Problems,” Ann. Stat.,
2(6), pp. 1152–1174.

[CrossRef]
Blei,
D. M.
,
Jordan,
M. I.
, and
Griffiths,
T. L.
, 2003, “
Hierarchical Topic Models and the Nested Chinese Restaurant Process,” International Conference on Neural Information Processing Systems, Whistler, BC, Canada, Dec. 9–11, pp. 17–24.

Blei,
D. M.
,
Griffiths,
T. L.
, and
Jordan,
M. I.
, 2007, “
The Nested Chinese Restaurant Process and Bayesian Nonparametric Inference of Topic Hierarchies,” ACM,
57(2), pp. 17–24.

Haff,
L. R.
, 1979, “
An Identity for the Wishart Distribution With Applications,” J. Multi. Anal.,
9(4), pp. 531–544.

[CrossRef]
Travis,
E.
, and
Oliphant,
E.
, 2007, “
Python for Scientific Computing,” Comput. Sci. Eng.,
9(3), pp. 10–20.

[CrossRef]
Garreta,
R.
, and
Moncecchi,
G.
, 2013, “
Learning Scikit-Learn: Machine Learning in Python,” Packt Publishing, Birmingham, UK.

Wang,
Z.
,
Tian,
Q.
, and
Hu,
H. Y.
, 2018, “
Dynamics of Flexible Multibody Systems With Hybrid Uncertain Parameters,” Mech. Mach. Theory,
121, pp. 128–147.

[CrossRef]