Malatkar, P., and Nayfeh, A. H., 2002, “Calculation of the Jump Frequencies in the Response of S.D.O.F. Non-Linear Systems,” J. Sound Vib., 254 (5), pp. 1005–1011.
Nayfeh, A. H., and Mook., D. T., 1979, "Nonlinear Oscillations", Wiley, New York.
Worden, K., and Manson, G., 2005, “A Volterra Series Approximation to the Coherence of the Duffing Oscillator,” J. Sound Vib., 286 , pp. 529–547.
Lau, S. L., Cheung, Y. K., and Wu, S. Y., 1983, “Incremental Harmonic Balance Method With Multiple Time Scales for Aperiodic Vibration of Nonlinear Systems,” ASME J. Appl. Mech., 50 , pp. 871–876.
Hamdan, M. N., and Burton, T. D., 1993, “On the Steady State Response and Stability of Non-Linear Oscillators Using Harmonic Balance,” J. Sound Vib., 166 (2), pp. 255–266.
Worden, K., 1996, “On Jump Frequencies in the Response of the Duffing Oscillator,” J. Sound Vib., 198 , pp. 522–525.
Sensoy, S., and Huseyin, K., 1998, “On the Application of IHB Technique to the Analysis of Non-Linear Oscillations and Bifurcations,” J. Sound Vib., 215 (1), pp. 35–46.
Xu, Y. X., Bao, W. B., Schiehlen, W., and Hu, H. Y., 2001, “A 1/3 Pure Subharmonic Solution and Transient Process for the Duffing’s Equation,” Appl. Math. Mech., 22 (5), pp. 586–592.
Narayanan, S., and Jayaraman, K., 1993, “Chaotic Oscillations of a Square Prism in Fluid Flow,” J. Sound Vib., 166 (1), pp. 87–101.
Senjanović, I., 1994, “Harmonic Analysis of Nonlinear Oscillations of Cubic Dynamical Systems,” J. Ship Res., 38 (3), pp. 225–238.
Peyton Jones, J. C., and Çankaya, I., 1996, “Generalised Harmonic Analysis of Nonlinear Ship Roll Dynamics,” J. Ship Res., 40 (4), pp. 316–325.
von Groll, G., and Ewins, D. J., 2001, “The Harmonic Balance Method With Arc-length Continuation in Rotor/Stator Contact Problems,” J. Sound Vib.
[CrossRef], 241 , pp. 223–233.
Moon, B. Y., Kang, B. S., and Kim, B. S., 2001, “Dynamic Analysis of Harmonically Excited Non-Linear Structure System Using Harmonic Balance Method,” KSME Int. J., 15 (11), pp. 1507–1516.
Petrov, E. P., and Ewins, D. J., 2003, “Analytical Formulation of Friction Interface for Analysis of Nonlinear Multi-Harmonic Vibrations of Bladed Disks,” ASME J. Turbomach.
[CrossRef], 125 , pp. 364–371.
Raghothama, A., and Narayanan, S., 2002, “Periodic Response and Chaos in Nonlinear Systems With Parametric Excitation and Time Delay,” Nonlinear Dyn., 27 , pp. 341–365.
Al-shyyab, A., and Kahraman, A., 2005, “Nonlinear Dynamic Analysis of a Multi-Mesh Gear Train Using Multi-Term Harmonic Balance Method: Sub-Harmonic Motions,” J. Sound Vib., 279 , pp. 417–451.
Maple, R. C., King, P. I., Orkwis, P. D., and Wolff, J. M., 2004, “Adaptive Harmonic Balance Method for Nonlinear Time-Periodic Flows,” J. Comput. Phys., 193 , pp. 620–641.
Mickens, R. E., 1987, “Iteration Procedure for Determining Approximate Solutions to Nonlinear Oscillator Equations,” J. Sound Vib., 116 , pp. 185–187.
Mickens, R. E., 2005, “A Generalised Iteration Procedure for Calculating Approximations to Periodic Solutions of “truly Nonlinear Oscillations,” J. Sound Vib., 287 , pp. 1045–1051.