Hooker, W. W., and Margulies, G., 1965, “The Dynamical Attitude Equations for an n-Body Satellite,” J. Astronaut. Sci., 7 (4), pp. 123–128.

Walker, M. W., and Orin, D. E., 1982, “Efficient Dynamic Computer Simulation of Robotic Mechanisms,” ASME J. Dyn. Syst., Meas., Control, 104 , pp. 205–211.

Armstrong, W. W., 1979, “Recursive Solution to the Equations of Motion of an N-Link Manipulator,” Fifth World Congress on the Theory of Machines and Mechanisms, 2 , pp. 1342–1346.

Featherstone, R., 1983, “The Calculation of Robotic Dynamics Using Articulated Body Inertias,” Int. J. Robot. Res., 2 (1), pp. 13–30.

Brandl, H., Johanni, R., and Otter, M., 1986, “A Very Efficient Algorithm for the Simulation of Robots and Similar Multibody Systems Without Inversion of the Mass Matrix,” IFAC/IFIP/IMACS Symposium, Vienna, Austria, pp. 95–100.

Bae, D. S., and Haug, E. J., 1987, “A Recursive Formation for Constrained Mechanical System Dynamics: Part I, Open Loop Systems,” Mech. Struct. Mach., 15 (3), pp. 359–382.

Kurdila, A. J., Menon, R. G., and Sunkel, J. W., 1993, “Nonrecursive Order N Formulation of Multibody Dynamics,” J. Guid. Control Dyn., 16 (5) pp. 838–844.

Anderson, K. S., 1995, “An Order-N Formulation for the Motion Simulation of General Multi-Rigid-Body Tree System,” Comput. Struct., 46 (3), pp. 547–559.

Jain, A., 1991, “Unified Formulation of Dynamics for Serial Rigid Multibody Systems,” J. Guid. Control Dyn., 14 (3), pp. 531–542.

Kim, S. S., and Haug, E. J., 1988, “Recursive Formulation for Flexible Multibody Dynamics: Part I, Open-Loop Systems,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 71 (3) pp. 293–314.

Jain, A. K., and Rodriguez, G., 1992, “Recursive Flexible Multibody System Dynamics Using Spatial Operators,” J. Guid. Control Dyn., 15 (6), pp. 1453–1466.

Anderson, K. S., 1995, “Efficient Modelling of General Multibody Dynamic Systems with Flexible Components,” "*Computational Dynamics in Multibody Systems*", Kluwer Academic Publishers, The Netherlands, pp. 79–97.

Bauchau, O. A., 2003, “Formulation of Modal-Based Elements in Nonlinear, Flexible Multibody Dynamics,” Int. J. Multiscale Comp. Eng., 1 (2–3), pp. 161–180.

Banerjee, A. K., 1993, “Block-Diagonal Equations for Multibody Elastodynamics with Geometric Stiffness and Constraints,” J. Guid. Control Dyn., 16 (6), pp. 1092–1100.

Shabana, A. A., 1997, “Flexible Multibody Dynamics: Review of Past and Recent Developments,” Multibody Syst. Dyn.

[CrossRef], 1 , pp. 189–222.

Quinn, M., 1994, "*Parallel Computing, Theory and Practice*", McGraw-Hill, New York.

Fijany, A., Shraf, I., D’Eleuterio, G. M. T., 1995, “Parallel O(logN) computation of manipulator forward dynamics,” IEEE Trans. Rob. Autom., 11 (3), pp. 389–400.

Featherstone, R., 1999, “A Divide-and-Conquer Articulated-Body Algorithm for Parallel O(log(n)) Calculation of Rigid Body Dynamics. Part 1: Basic Algorithm,” Int. J. Robot. Res.

[CrossRef], 18 (3), pp. 867–875.

Featherstone, R., 1999, “A Divide-and-Conquer Articulated-Body Algorithm for Parallel O(log(n)) Calculation of Rigid Body Dynamics. Part 2: Trees, Loops and Accuracy,” Int. J. Robot. Res., 18 (3), pp. 876–892.

Shabana, A. A., 1996, “Resonance Conditions and Deformable Body Coordinate Systems,” J. Sound Vib.

[CrossRef], 192 (1), pp. 389–398.

Schwertassek, R., Wallrapp, O., and Shabana, A., 1999, “Flexible Multibody Simulation and Choice of Shape Functions,” Nonlinear Dyn., 20 , pp. 361–380.

Schwertassek, R., Dombrowski, S., and Wallrapp, O., 1999, “Modal Representation of Stree in Flexible Multibody Simulations,” Nonlinear Dyn., 20 , pp. 381–399.

Shabana, A. A., 1993, “Substructuring in Flexible Multibody Dynamics,” in Proceedings of the Computer Aided Analysis of Rigid and Flexible Mechanical Systems: NATO-Advanced Study Institute , Vol. 1 , pp. 377–396.

Roberson, R. E., and Schwertassek, R., 1988, "*Dynamics of Multibody Systems*", Springer-Verlag, Berlin.

Kane, T. R., and Levinson, D. A., 1985, "*Dynamics: Theory and Application*", McGraw-Hill, New York.

Mukherjee, R., and Anderson, K. S., 2006, “Orthogonal Complement Based Divide-and-Conquer Algorithm for Constrained Multibody Systems,” Nonlinear Dynamics (in press).

Kim, S. S., and VanderPloeg, M. J., 1986, “Generalized and Efficient Method for Dynamic Analysis of Mechanical Systems Using Velocity Transforms,” ASME J. Mech., Transm., Autom. Des., 108 (2), pp. 176–182.

Nikravesh, P. E., 1990, “Systematic Reduction of Multibody Equations to a Minimal Set,” Int. J. Non-Linear Mech.

[CrossRef], 25 (2–3), pp. 143–151.

Ambrosia, J. A. C., 2001, “Complex Flexible Multibody Systems with Application to Vehicle Dynamics,” Multibody Syst. Dyn.

[CrossRef], 6 (2), pp. 163–182.

Botz, M., and Hagedorn, P., 1997, “Dynamic Simulation of multibody systems including planar elastic beams using Autolev,” Eng. Comput., 14 (4), pp. 456–470.

Claus, H., 2001, “A Deformation Approach to Stress Distribution in Flexible Multibody Systems,” Multibody Syst. Dyn.

[CrossRef], 6 , pp. 143–161.

Seo, S., and Yoo, H., 2002, “Dynamic Analysis of Flexible Beams Undergoing Overall Motion Employing Linear Strain Measures,” AIAA J., 40 (2), pp. 319–326.

Yoo, H., Ryan, R., and Scott, R., 1995, “Dynamics of Flexible Beams Undergoing Overall Motion,” J. Sound Vib.

[CrossRef], 181 (2), pp. 261–278.

Yoo, H., and Shin, S., 1998, “Vibration Analysis of Rotating Cantilever Beams,” J. Sound Vib.

[CrossRef], 212 (5), pp. 807–828.