Bolotin, V. V., 1963, "Nonconservative Problems of the Theory of Elastic Stability", Pergamon, Oxford.
Goodwin, M. J., 1990, "Dynamics of Rotor-Bearing Systems", Unwinm Hyman, London.
Lalane, M., and Ferraris, G., 1990, "Rotordynamics Prediction in Engineering", Wiley, New York.
Hochstadt, H., 1964, "Differential Equations", Dover, New York.
Nayfeh, A. H., and Mook, D. T., 1979, "Nonlinear Oscillations", Wiley, New York.
Cardona, A., 1989, “An Integrated Approach to Mechanism Analysis,” Ph.D. thesis, Université de Liège.
Cardona, A., and Géradin, M., 1989, “Time Integration of the Equations of Motion in Mechanism Analysis,” Comput. Struct.
[CrossRef], 33 (3), pp. 801–820.
Bauchau, O. A., Bottasso, C. L., and Nikishkov, Y. G., 2001, “Modeling Rotorcraft Dynamics With Finite Element Multibody Procedures,” Math. Comput. Modell.
[CrossRef], 33 (10–11), pp. 1113–1137.
Bauchau, O. A., and Wang, J. L., 2006, “Stability Analysis of Complex Multibody Systems,” ASME J. Comput. Nonlinear Dyn.
[CrossRef], 1 (1), pp. 71–80.
Murphy, K. D., Bayly, P. V., Virgin, L. N., and Gottwald, J. A., 1994, “Measuring the Stability of Periodic Attractors Using Perturbation Induced Transients: Applications to Two Nonlinear Oscillators,” J. Sound Vib.
[CrossRef], 172 , pp. 85–102.
Trickey, S. T., Virgin, L. N., and Dowell, E. H., 2002, “The Stability of Limit Cycle Oscillations in a Nonlinear Aeroelastic System,” Proc. R. Soc. London, Ser. A, 458 , pp. 2203–2226.
Quaranta, G., Mantegazza, P., and Masarati, P., 2004, “Assessing the Local Stability of Periodic Motions for Large Multibody Non-Linear Systems Using Proper Orthogonal Decomposition,” J. Sound Vib.
[CrossRef], 271 , pp. 1015–1038.
Lathrop, D. P., and Kostelich, E. J., 1989, “Characterization of an Experimental Strange Attractor by Periodic Orbits,” Phys. Rev. A
[CrossRef], 40 (7), pp. 4028–4031.
Antoulas, A. C., Sorensen, D. C., and Gugercin, S., 2001, “A Survey of Model Reduction Methods for Large Scale Systems,” Contemp. Math., 280 , pp. 193–219.
Ho, B., and Kalman, R., 1996, “Efficient Construction of Linear State Variable Models from Input/Output Functions,” Regelungstechnik, 14 , pp. 545–548.
Juang, J. N., and Pappa, R. S., 1985, “An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction,” J. Guid. Control Dyn., 8 (5), pp. 620–627.
Moore, B. C., 1981, “Principal Component Analysis in Linear Systems: Controllability, Observability, and Model Reduction,” IEEE Trans. Autom. Control
[CrossRef], AC-26 (1), pp. 17–32.
Gugercin, S., and Antoulas, A. C., 2004, “A Survey of Model Reduction by Balanced Truncation and Some New Results,” Int. J. Control, 77 (8), pp. 748–766.
Durbin, J., 1959, “Efficient Estimation of Parameter in Moving Average Models,” Biometrika, 46 , pp. 306–316.
Kay, S. M., and Nagesha, V., 1994, “Maximum Likelihood Estimation of Signals in Autoregressive Noise,” IEEE Trans. Signal Process., 42 (1), pp. 88–101.
Gautier, P. E., Gontier, C., and Smail, M., 1995, “Robustness of an Arma Identification Method for Modal Analysis of Mechanical Systems in the Presence of Noise,” J. Sound Vib., 179 (2), pp. 227–242.
Glover, K., 1984, “All Optimal Hankel-Norm Approximations of Linear Multivariable Systems and Their L Inf-Error Bounds,” Int. J. Control, 39 (4), pp. 1115–1193.
Shin, K., Hammon, J. K., and White, P. R., 1999, “Iterative SVD method for Noise Reduction of Low-Dimensional Chaotic Time Series,” Mech. Syst. Signal Process., 13 (1), pp. 115–124.
Pearson, K., 1901, “On Lines and Planes of Closest Fit to Points in Space,” Philos. Mag., 2 , pp. 609–629.
Lieu, T., Farhat, C., and Lesoinne, M., in press, “Reduced-Order Fluid/Structure Modeling of a Complete Aircraft Configuration,” Comput. Methods Appl. Mech. Eng.
Bialecki, R. A., Kassab, A. J., and Fic, A., 2005, “Proper Orthogonal Decomposition and Modal Analysis for Acceleration of Transient Fem Thermal Analysis,” Int. J. Numer. Methods Eng., 62 (6), pp. 774–797.
Lall, S., Marsden, J. E., and Glavaśki, S., 2002, “A Subspace Approach to Balanced Truncation for Model Reduction of Nonlinear Control Systems,” Int. J. Robust Nonlinear Control
[CrossRef], 12 (5), pp. 519–535.
Feeny, B. F., and Kappagantu, R., 1998, “On the Physical Interpretation of Proper Orthogonal Modes in Vibrations,” J. Sound Vib.
[CrossRef], 211 (4), pp. 607–611.
Azeez, M. F. A., and Vakakis, A. F., 2001, “Proper Orthogonal Decomposition (POD) of a Class of Vibroimpact Oscillations,” J. Sound Vib.
[CrossRef], 240 (5), pp. 859–889.
Wang, X., and Peters, D. A., 1997, “Floquet Analysis in the Absence of Complete Information on States and Perturbations,” "Proceedings of the Seventh International Workshop on Dynamics and Aeroelasticity Stability Modeling", St. Louis, October 14–16, pp. 237–248.
Peters, D. A., and Wang, X., 1998, “Generalized Floquet Theory for Analysis of Numerical or Experimental Rotor Response Data,” "Proceedings of the 24th European Rotorcraft Forum", Marseilles, France, September.
Golub, G. H., and Van Loan, C. F., 1989, "Matrix Computations", 2nd ed., The Johns Hopkins University Press, Baltimore.
Ewins, D. J., 1984, "Modal Testing: Theory and Practice", Wiley, New York.
Lardies, J., 1996, “Analysis of Multivariate Autoregressive Process,” Mech. Syst. Signal Process., 10 (6), pp. 747–761.
Demmel, J. W., 1997, "Applied Numerical Linear Algebra", SIAM, Philadelphia.
Trefethen, L. N., and Bau, D., 1997, "Numerical Linear Algebra", SIAM, Philadelphia.
Fierro, R. D., and Jiang, E. P., 2005, “Lanczos and the Riemannian SVD in Information Retrieval Applications,” Numer. Linear Algebra Appl., 12 , pp. 355–372.
Kokiopoulou, E., Bekas, C., and Gallopoulos, E., 2004, “Computing Smallest Singular Triplets With Implicitly Restarted Lanczos Bidiagonalization,” Appl. Numer. Math., 49 , pp. 39–61.
Bauchau, O. A., 1998, “Computational Schemes for Flexible, Nonlinear Multi-Body Systems,” Multibody Syst. Dyn.
[CrossRef], 2 (2), pp. 169–225.
Bauchau, O. A., and Rodriguez, J., 2002, “Modeling of Joints With Clearance in Flexible Multibody Systems,” Int. J. Solids Struct.
[CrossRef], 39 , pp. 41–63.
Goland, M., 1945, “The Flutter of a Uniform Cantilever Wing,” ASME J. Appl. Mech., 12 (4), pp. A197–A208.
Peters, D. A., Karunamoorthy, S., and Cao, W. M., 1995 “Finite State Induced Flow Models. Part I: Two-Dimensional Thin Airfoil,” J. Aircr., 32 , pp. 313–322.
Peters, D. A., and He, C. J., 1995, “Finite State Induced Flow Models. Part II: Three-Dimensional Rotor Disk,” J. Aircr., 32 , pp. 323–333.
Bisplinghoff, R. L., Ashley, H., and Halfman, R. L., 1955, "Aeroelasticity", 2nd ed., Addison-Wesley, Reading, MA.