Schiehlen, W. O., 1984, “Dynamics of Complex Multibody Systems,” SM Arch., 9 , pp. 159–195.

Gear, C. W., and Petzold, L. R., 1984, “ODE Methods for the Solution of Differential∕Algebraic Systems,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.

[CrossRef], 21 (4), pp. 716–728.

Lötstedt, P., and Petzold, L. R., 1984, “Numerical Solution of Nonlinear Differential Equations With Algebraic Constraints. I: Convergence Results for Backward Differentiation Formulas,” Math. Comput., 46 (174), pp. 491–516.

Petzold, L. R., and Lötstedt, P., 1986, “Numerical Solution of Nonlinear Differential Equations With Algebraic Constraints. II: Practical Implications,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput., 7 (3), pp. 720–733.

Brenan, K. E., Campbell, S. L., and Petzold, L. R., 1989, "*Numerical Solution of Initial-Value Problems in Differential-Algebraic Problems*", North-Holland, New York.

Maggi, G. A., 1896, "*Principii della Teoria Matematica del Movimento Dei Corpi: Corso di Meccanica Razionale*", Ulrico Hoepli, Milano.

Maggi, G. A., 1901, “Di alcune nuove forme delle equazioni della dinamica applicabili ai systemi anolonomi,” Atti Accad. Naz. Lincei Rend. Cl. Fis. Mat. Nat., X , pp. 287–291.

Neimark, J. I., and Fufaev, N. A., 1972, "*Dynamics of Nonholonomic Systems*", American Mathematical Society, Providence, RI.

Kurdila, A., Papastavridis, J. G., and Kamat, M. P., 1990, “Role of Maggi’s Equations in Computational Methods for Constrained Multibody Systems,” J. Guid. Control Dyn., 13 (1), pp. 113–120.

Papastavridis, J. G., 1990, “Maggi’s Equations of Motion and the Determination of Constraint Reactions,” J. Guid. Control Dyn., 13 (2), pp. 213–220.

Nikravesh, P. E., 1984, “Some Methods for Dynamic Analysis of Constrained Mechanical Systems: A Survey,” in "*Computer Aided Analysis and Optimization of Mechanical Systems Dynamics*", E.J.Haug, ed., Springer-Verlag, Berlin, pp. 351–367.

Hemami, H., and Weimer, F. C., 1981, “Modeling of Nonholonomic Dynamic Systems With Applications,” ASME J. Appl. Mech., 48 , pp. 177–182.

Lötstedt, P., 1982, “Mechanical Systems of Rigid Bodies Subjected to Unilateral Constraints,” SIAM J. Appl. Math.

[CrossRef], 42 (2), pp. 281–296.

Gear, C. W., Leimkuhler, B., and Gupta, G. K., 1985, “Automatic Integration of Euler-Lagrange Equations With Constraints,” J. Comput. Appl. Math., 12&13 , pp. 77–90.

Kane, T. R., and Wang, C. F., 1965, “On the Derivation of Equations of Motion,” J. Soc. Ind. Appl. Math.

[CrossRef], 13 (2), pp. 487–492.

Kane, T. R., and Levinson, D. A., 1985, "*Dynamics: Theory and Applications*", McGraw-Hill, New York.

García de Jalón, J., Unda, J., Avello, A., and Jiménez, J. M., 1987, “Dynamic Analysis of Three-Dimensional Mechanisms in “Natural” Coordinates,” ASME J. Mech., Transm., Autom. Des., 109 , pp. 460–465.

Unda, J., García de Jalón, J., Losantos, F., and Enparantza, R., 1987, “A Comparative Study on Some Different Formulations of the Dynamic Equations of Constrained Mechanical Systems,” ASME J. Mech., Transm., Autom. Des., 109 , pp. 466–474.

Borri, M., Bottasso, C. L., and Mantegazza, P., 1992, “Acceleration Projection Method in Multibody Dynamics,” Eur. J. Mech. A/Solids, 11 (3), pp. 403–418.

Udwadia, F. E., Kalaba, R. E., and Eun, H. C., 1997, “Equations of Motion for Constrained Mechanical Systems and the Extended D’Alembert’s Principle,” Q. Appl. Math., 55 (2), pp. 321–331.

Udwadia, F. E., and Kalaba, R. E., 1992, “A New Perspective on Constrained Motion,” Proc. R. Soc. London, Ser. A, 439 , pp. 407–410.

Kalaba, R. E., and Udwadia, F. E., 1992, “On Constrained Motion,” Appl. Math. Comput.

[CrossRef], 51 , pp. 85–86.

Kalaba, R. E., and Udwadia, F. E., 1993, “Equations of Motion for Nonholonomic, Constrained Dynamical Systems Via Gauss’s Principle,” ASME J. Appl. Mech., 60 , pp. 662–668.

Kalaba, R. E., and Udwadia, F. E., 1994, “Lagrangian Mechanics, Gauss’s Principle, Quadratic Programming, and Generalized Inverses: New Equations for Nonholonomically Constrained Discrete Mechanical Systems,” Q. Appl. Math., 52 (2), pp. 229–241.

Udwadia, F. E., and Kalaba, R. E., 1993, “On Motion,” J. Franklin Inst.

[CrossRef], 330 (3), pp. 571–577.

Udwadia, F. E., and Kalaba, R. E., 1996, “Equations of Motion for Mechnical Systems,” J. Aerosp. Eng.

[CrossRef], 9 (3), pp. 64–69.

Udwadia, F. E., and Kalaba, R. E., 1995, “The Geometry of Constrained Motion,” Z. Angew. Math. Mech., 75 (8), pp. 637–640.

Udwadia, F. E., and Kalaba, R. E., 1998, “The Explicit Gibbs-Appell Equation and Generalized Inverse Forms,” Q. Appl. Math., 56 (2), pp. 277–288.

Udwadia, F. E., and Kalaba, R. E., 2002, “What Is the General Form of the Explicit Equations of Motion for Constrained Mechanical System,” ASME J. Appl. Mech.

[CrossRef], 69 , pp. 335–339.

Udwadia, F. E., and Kalaba, R. E., 2002, “On the Foundations of Analytical Dynamics,” Int. J. Non-Linear Mech.

[CrossRef], 37 , pp. 1079–1090.

Lilov, L., and Lorer, M., 1982, “Dynamic Analysis of Multirigid-Body Systems Based on Gauss Principle,” Z. Angew. Math. Mech.

[CrossRef], 62 , pp. 539–545.

Orlandea, N., Chace, M. A., and Calahan, D. A., 1977, “A Sparsity-Oriented Approach to the Dynamic Analysis and Design of Mechanical Systems. Part I,” ASME J. Eng. Ind., 99 (3), pp. 773–779.

Orlandea, N., Calahan, D. A., and Chace, M. A., 1977, “A Sparsity-Oriented Approach to the Dynamic Analysis and Design of Mechanical Systems. Part II,” ASME J. Eng. Ind., 99 (3), pp. 780–784.

Campbell, S. L., and Leimkuhler, B., 1991, “Differentiation of Constraints in Differential-Algebraic Equations,” Mech. Struct. Mach.

[CrossRef], 19 (1), pp. 19–39.

Brauchli, H., 1991, “Mass-Orthogonal Formulation of Equations of Motion for Multibody Systems,” ZAMP

[CrossRef], 42 , pp. 169–182.

Brauchli, H., and Weber, R., 1991, “Dynamical Equations in Natural Coordinates,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 91 , pp. 1403–1414.

Golub, G. H., and Van Loan, C. F., 1989, "*Matrix Computations*", 2nd ed., The Johns Hopkins University Press, Baltimore.

Borri, M., Bottasso, C. L., and Mantegazza, P., 1990, “Equivalence of Kane’s and Maggi’s Equations,” Meccanica

[CrossRef], 25 , pp. 272–274.

Maißer, P., 1991, “Analytical Dynamics of Multibody Systems,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 91 , pp. 1391–1396.

Essén, H., 1994, “On the Geometry of Nonholonomic Dynamics,” ASME J. Appl. Mech., 61 , pp. 689–694.

Blajer, W., 1997, “A Geometric Unification of Constrained System Dynamics,” Multibody Syst. Dyn.

[CrossRef], 1 , pp. 3–21.

Blajer, W., 2001, “A Geometrical Interpretation and Uniform Matrix Formulation of Multibody System Dynamics,” Z. Angew. Math. Mech.

[CrossRef], 81 (4), pp. 247–259.

Gear, C. W., 1971, "*Numerical Initial Value Problems in Ordinary Differential Equations*", Prentice-Hall, Englewood Cliff, NJ.

Gear, C. W., 1971, “Simultaneous Numerical Solution of Differential-Algebraic Equations,” IEEE Trans. Circuit Theory, CT-18 (1), pp. 89–95.

Gear, C. W., 1984, “Differential-Algebraic Equations,” "*Computer Aided Analysis and Optimization of Mechanical Systems Dynamics*", E.J.Haug, ed., Springer-Verlag, Berlin, pp. 323–334.

Haug, E. J., 1984, “Elements and Methods of Computational Dynamics,” "*Computer Aided Analysis and Optimization of Mechanical Systems Dynamics*", E.J.Haug, ed., Springer-Verlag, Berlin, pp. 3–38.

Wehage, R. A., and Haug, E. J., 1982, “Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems,” ASME J. Mech. Des., 104 (1), pp. 247–255.

Walton, W. C., and Steeves, E. C., 1969, “A New Matrix Theorem and Its Application for Establishing Independent Coordinates for Complex Dynamical Systems With Constraints,” NASA, Technical Report No. NASA TR R-326.

Nikravesh, P. E., and Chung, I. S., 1982, “Application of Euler Parameters to the Dynamic Analysis of Three-Dimensional Constrained Mechanical Systems,” ASME J. Mech. Des., 104 , pp. 785–791.

Singh, R. P., and Likins, P. W., 1985, “Singular Value Decomposition for Constrained Dynamical Systems,” ASME J. Appl. Mech., 52 , pp. 943–948.

Mani, N. K., Haug, E. J., and Atkinson, K. E., 1985, “Application of Singular Value Decomposition for Analysis of Mechanical System Dynamics,” ASME J. Mech., Transm., Autom. Des., 107 , pp. 82–87.

Amirouche, F. M. L., Jia, T., and Ider, S. K., 1988, “A Recursive Householder Transformation for Complex Dynamical Systems With Constraints,” ASME J. Appl. Mech., 55 , pp. 729–734.

Agrawal, O. P., and Saigal, S., 1989, “Dynamic Analysis of Multi-Body Systems Using Tangent Coordinates,” Comput. Struct.

[CrossRef], 31 (3), pp. 349–355.

Liang, C. G., and Lance, G. M., 1987, “A Differentiable Null Space Method for Constrained Dynamic Analysis,” ASME J. Mech., Transm., Autom. Des., 109 , pp. 405–411.

Wampler, C., Buffinton, K., and Shu-hui, J., 1985, “Formulation of Equations of Motion for Systems Subject to Constraints,” ASME J. Appl. Mech., 52 , pp. 465–470.

Kim, S. S., and Vanderploeg, M. J., 1986, “QR Decomposition for State Space Representation of Constrained Mechanical Dynamic Systems,” ASME J. Mech., Transm., Autom. Des., 108 , pp. 183–188.

García de Jalón, J., Serna, M. A., and Avilés, R., 1981, “Computer Method for Kinematic Analysis of Lower-Pair Mechanisms. I. Velocities and Accelerations,” Mech. Mach. Theory

[CrossRef], 16 (5), pp. 543–556.

García de Jalón, J., Serna, M. A., and Avilés, R., 1981, “Computer Method for Kinematic Analysis of Lower-Pair Mechanisms. II. Position Problems,” Mech. Mach. Theory

[CrossRef], 16 (5), pp. 557–566.

García de Jalón, J., Serna, M. A., Viadero, F., and Flaquer, J., 1982, “A Simple Numerical Method for the Kinematic Analysis of Spatial Mechanisms,” ASME J. Mech. Des., 104 , pp. 78–82.

Tárrago, J. A., Serna, M. A., Bastero, C., and García de Jalón, J., 1982, “A Computer Method for the Finite Displacement Problem in Spatial Mechanisms,” ASME J. Mech. Des., 104 , pp. 869–874.

Serna, M. A., Avilés, R., and García de Jalón, J., 1982, “Dynamic Analysis of Plane Mechanisms With Lower Pairs in Basic Coordinates,” Mech. Mach. Theory

[CrossRef], 17 (6), pp. 397–403.

García de Jalón, J., Jiménez, J. M., Avello, A., Martín, F., and Cuadrado, J., 1990, “Real Time Simulation of Complex 3-D Multibody Systems With Realistic Graphics,” "*Real-Time Integration Methods for Mechanical System Simulation*", E.J.Haug and R.C.Deyo, eds., Springer-Verlag, Berlin, pp. 265–292.

García De Jalón, J., Unda, J., and Avello, A., 1986, “Natural Coordinates for the Computer Analysis of Multibody Systems,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 56 , pp. 309–327.

Avello, A., Jiménez, J. M., Bayo, E., and García de Jalón, J., 1993, “A Simple and Highly Parallelizable Method for Real-Time Dynamic Simulation Based on Velocity Transformations,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 107 , pp. 313–339.

Bauchau, O. A., and Laulusa, A., 2008, “Review of Contemporary Approaches for Constraint Enforcement in Multibody Systems,” ASME J. Comput. Nonlinear Dyn., 3 , p. 011005.

Kamman, J. W., and Huston, R. L., 1984, “Constrained Multibody System Dynamics-an Automated Approach,” Comput. Struct.

[CrossRef], 18 (6), pp. 999–1003.

Kamman, J. W., and Huston, R. L., 1984, “Dynamics of Constrained Multibody Systems,” ASME J. Appl. Mech., 51 , pp. 899–903.

Chiou, J. C., Park, K. C., and Farhat, C., 1993, “A Natural Partitioning Scheme for Parallel Simulation of Multibody Systems,” Int. J. Numer. Methods Eng.

[CrossRef], 36 , pp. 945–967.

Park, K. C., Chiou, J. C., and Downer, J. D., 1990, “Explicit-Implicit Staggered Procedure for Multibody Dynamics Analysis,” J. Guid. Control Dyn., 13 (3), pp. 562–570.

Arabyan, A., and Wu, F., 1998, “An Improved Formulation for Constrained Mechanical Systems,” Multibody Syst. Dyn.

[CrossRef], 2 , pp. 49–69.

Blajer, W., 1992, “A Projection Method Approach to Constrained Dynamic Analysis,” ASME J. Appl. Mech., 59 , pp. 643–649.

Blajer, W., 1992, “Projective Formulation of Maggi’s Method for Nonholonomic System Analysis,” J. Guid. Control Dyn., 15 (2), pp. 522–525.

Blajer, W., Schiehlen, W., and Schirm, W., 1994, “A Projective Criterion to the Coordinate Partitioning Method for Multibody Dynamics,” Arch. Appl. Mech., 64 , pp. 86–98.

Blajer, W., 1995, “An Orthonormal Tangent Space Method for Constrained Multibody Systems,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 121 , pp. 45–57.

Borri, M., Bottasso, C. L., and Mantegazza, P., 1992, “A Modified Phase Space Formulation for Constrained Mechanical Systems-Differential Approach,” Eur. J. Mech. A/Solids, 11 (5), pp. 701–727.