Laulusa, A., and Bauchau, O. A., 2008, “Review of Classical Approaches for Constraint Enforcement in Multibody Systems,” ASME J. Comput. Nonlinear Dyn., 3 , p. 011004.

Gear, C. W., 1988, “Differential-Algebraic Equation Index Transformations,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput., 9 (1), pp. 40–47.

Eich, E., 1993, “Convergence Results for a Coordinate Projection Method Applied to Mechanical Systems With Algebraic Constraints,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.

[CrossRef], 30 (5), pp. 1467–1482.

Yen, J., Haug, E. J., and Tak, T. O., 1991, “Numerical Methods for Constrained Equations of Motion in Mechanical System Dynamics,” Mech. Struct. Mach.

[CrossRef], 19 (1), pp. 41–76.

Yen, J., 1993, “Constrained Equations of Motion in Multibody Dynamics as ODEs on Manifolds,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.

[CrossRef], 30 (2), pp. 553–568.

Potra, F. A., and Yen, J., 1991, “Implicit Numerical Integration for Euler-Lagrange Equations via Tangent Space Parametrization,” Mech. Struct. Mach.

[CrossRef], 19 (1), pp. 77–98.

Haug, E. J., and Yen, J., 1992, “Implicit Numerical Integration of Constrained Equations of Motion via Generalized Coordinate Partitioning,” ASME J. Mech. Des., 114 , pp. 296–304.

Yen, J., and Petzold, L. R., 1998, “An Efficient Newton-Type Iteration for the Numerical Solution of Highly Oscillatory Constrained Multibody Dynamic Systems,” SIAM J. Sci. Comput. (USA)

[CrossRef], 19 (5), pp. 1513–1534.

Yen, J., Petzold, L. R., and Raha, S., 1998, “A Time Integration Algorithm for Flexible Mechanism Dynamics: The DAE α-Method,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 158 , pp. 341–355.

Hilber, H. M., Hughes, T. J. R., and Taylor, R. L., 1977, “Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics,” Earthquake Eng. Struct. Dyn.

[CrossRef], 5 , pp. 282–292.

Chung, J., and Hulbert, G. M., 1993, “A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method,” ASME J. Appl. Mech., 60 , pp. 371–375.

Tseng, F. C., Ma, Z. D., and Hulbert, G. M., 2003, “Efficient Numerical Solution of Constrained Multibody Dynamics Systems,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 192 , pp. 439–472.

Borri, M., Croce, A., and Trainelli, L., and Croce, A., 2006, “The Embedded Projection Method: A General Index Reduction Procedure for Constrained System Dynamics,” Comput. Methods Appl. Mech. Eng., 195 , pp. 6974–6992.

Parczewski, J., and Blajer, W., 1989, “On Realization of Program Constraints: Part I—Theory,” ASME J. Appl. Mech., 56 , pp. 676–679.

Blajer, W., and Parczewski, J., 1989, “On Realization of Program Constraints. Part II—Practical Implications,” ASME J. Appl. Mech., 56 , pp. 680–684.

Baumgarte, J. W., 1972, “Stabilization of Constraints and Integrals of Motion in Dynamic Systems,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 1 , pp. 1–16.

Ostermeyer, G. P., 1990, “On Baumgarte Stabilization for Differential Algebraic Equations,” in "*Real-Time Integration Methods for Mechanical System Simulation*", E.J.Haug, and R.C.Deyo, eds., Springer-Verlag, Berlin, pp. 193–207.

Eich, E., and Hanke, M., 1995, “Regularization Methods for Constrained Mechanical Multibody Systems,” Z. Angew. Math. Mech., 75 (10), pp. 761–773.

Nikravesh, P. E., Wehage, R. A., and Kwon, O. K., 1985, “Euler Parameters in Computational Dynamics and Kinematics. Part I and Part II,” ASME J. Mech., Transm., Autom. Des., 107 (3), pp. 358–369.

Park, T. W., and Haug, E. J., 1986, “A Hybrid Numerical Integration Method for Machine Dynamic Simulation,” ASME J. Mech., Transm., Autom. Des., 108 , pp. 211–216.

Chang, C. O., and Nikravesh, P. E., 1985, “An Adaptive Constraint Violation Stabilization Method for Dynamic Analysis of Mechanical Systems,” ASME J. Mech., Transm., Autom. Des., 107 , pp. 488–492.

Bae, D. S., and Yang, S. M., 1990, “A Stabilization Method for Kinematic and Kinetic Constraint Equations,” in "*Real-Time Integration Methods for Mechanical System Simulation*", E.J.Huang, and R.C.Deyo, eds., Springer-Verlag, Berlin, pp. 209–232.

Yoon, S., Howe, R. M., and Greenwood, D. T., 1995, “Stability and Accuracy Analysis of Baumgarte’s Constraint Violation Stabilization Method,” ASME J. Mech. Des., 117 , pp. 446–453.

Chiou, J. C., and Wu, S. D., 1998, “Constraint Violation Stabilization Using Input-Output Feedback Linearization in Multibody Dynamic Analysis,” J. Guid. Control Dyn., 21 (2), pp. 222–228.

Lin, S. T., and Hong, M. C., 1998, “Stabilization Method for Numerical Integration of Multibody Mechanical Systems,” ASME J. Mech. Des., 120 , pp. 565–572.

Park, K. C., and Chiou, J. C., 1988, “Stabilization of Computational Procedures for Constrained Dynamical Systems,” J. Guid. Control Dyn., 11 (4), pp. 365–370.

Bayo, E., García de Jalón, J., and Serna, M. A., 1988, “A Modified Lagrangian Formulation for the Dynamic Analysis of Constrained Mechanical Systems,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 71 , pp. 183–195.

Bayo, E., García de Jalón, J., Avello, A., and Cuadrado, J., 1991, “An Efficient Computational Method for Real Time Multibody Dynamic Simulation in Fully Cartesian Coordinates,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 92 , pp. 377–395.

Yoon, S., Howe, R. M., and Greenwood, D. T., 1994, “Geometric Elimination of Constraint Violations in Numerical Simulation of Lagrangian Equations,” ASME J. Mech. Des., 116 , pp. 1058–1064.

Blajer, W., 2002, “Elimination of Constraint Violation and Accuracy Aspects in Numerical Simulation of Multibody Systems,” Multibody Syst. Dyn.

[CrossRef], 7 , pp. 265–284.

Baumgarte, J. W., 1983, “A New Method of Stabilization for Holonomic Constraints,” ASME J. Appl. Mech., 50 , pp. 869–870.

Terze, Z., Lefeber, D., and Muftić, O., 2001, “Null Space Integration Method for Constrained Multi-Body System Simulation With No Constraint Violation,” Multibody Syst. Dyn.

[CrossRef], 6 , pp. 229–243.

Bayo, E., and Avello, A., 1994, “Singularity-Free Augmented Lagrangian Algorithms for Constrained Multibody Dynamics,” Nonlinear Dyn., 5 , pp. 209–231.

Bayo, E., and Ledesma, R., 1996, “Augmented Lagrangian and Mass-Orthogonal Projection Methods for Constrained Multibody Dynamics,” Nonlinear Dyn.

[CrossRef], 9 , pp. 113–130.

Schiehlen, W. O., 1991, “Computational Aspects in Multibody System Dynamics,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 90 , pp. 569–582.

Cuadrado, J., Cardenal, J., and Bayo, E., 1997, “Modeling and Solution Methods for Efficient Real-Time Simulation of Multibody Dynamics,” Multibody Syst. Dyn.

[CrossRef], 1 , pp. 259–280.

García de Jalón, J., and Bayo, E., 1994, "*Kinematic and Dynamic Simulation of Multibody Systems. The Real-Time Challenge*", Springer-Verlag, New York.

Géradin, M., and Cardona, A., 2001, "*Flexible Multibody System: A Finite Element Approach*", Wiley, New York.

Shabana, A. A., 1997, “Flexible Multibody Dynamics: Review of Past and Recent Developments,” Multibody Syst. Dyn.

[CrossRef], 1 , pp. 189–222.

Shabana, A. A., 1985, “Substructure Synthesis Methods for Dynamic Analysis of Multi-Body Systems,” Comput. Struct.

[CrossRef], 20 , pp. 737–744.

Cardona, A., and Géradin, M., 1992, “A Superelement Formulation for Mechanism Analysis,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 100 , pp. 1–29.

Hughes, T. J. R., 1992, "*The Finite Element Method*", Prentice-Hall, Englewood Cliffs, NJ.

Bathe, K. J., 1996, "*Finite Element Procedures*", Prentice-Hall, Englewood Cliffs, NJ.

Shampine, L. F., and Gordon, M. K., 1975, "*Computer Solution of Ordinary Differential Equations: The Initial Value Problem*", Freeman, San Francisco.

Cardona, A., and Géradin, M., 1989, “Time Integration of the Equations of Motion in Mechanism Analysis,” Comput. Struct.

[CrossRef], 33 (3), pp. 801–820.

Cardona, A., 1989, “An Integrated Approach to Mechanism Analysis,” Ph.D. thesis, Université de Liège, Liege, Belgium.

Newmark, N. M., 1959, “A Method of Computation for Structural Dynamics,” J. Engrg. Mech. Div., 85 , pp. 67–94.

Hughes, T. J. R., 1983, “Analysis of Transient Algorithms With Particular Reference to Stability Behavior,” in "*Computational Methods for Transient Analysis*", T.Belytschko, and T.J. R.Hughes, eds., North-Holland, Amsterdam, pp. 67–155.

Bauchau, O. A., Damilano, G., and Theron, N. J., 1995, “Numerical Integration of Nonlinear Elastic Multi-Body Systems,” Int. J. Numer. Methods Eng.

[CrossRef], 38 , pp. 2727–2751.

Bauchau, O. A., Bottasso, C. L., and Trainelli, L., 2003, “Robust Integration Schemes for Flexible Multibody Systems,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 192 (3–4), pp. 395–420.

Bauchau, O. A., and Theron, N. J., 1996, “Energy Decaying Schemes for Nonlinear Elastic Multi-Body Systems,” Comput. Struct.

[CrossRef], 59 (2), pp. 317–331.

Bauchau, O. A., 1998, “Computational Schemes for Flexible, Nonlinear Multi-Body Systems,” Multibody Syst. Dyn.

[CrossRef], 2 (2), pp. 169–225.

Bauchau, O. A., and Bottasso, C. L., 1999, “On the Design of Energy Preserving and Decaying Schemes for Flexible, Nonlinear Multi-Body Systems,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 169 (1–2), pp. 61–79.

Borri, M., Bottasso, C. L., and Trainelli, L., 2001, “Integration of Elastic Multibody Systems by Invariant Conserving∕Dissipating Algorithms. Part I: Formulation,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 190 , pp. 3669–3699.

Borri, M., Bottasso, C. L., and Trainelli, L., 2001, “Integration of Elastic Multibody Systems by Invariant Conserving∕Dissipating Algorithms. Part II: Numerical Schemes and Applications,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 190 , pp. 3701–3733.

Gonzalez, O., 1999, “Mechanical Systems Subject to Holonomic Constraints: Differential-Algebraic Formulations and Conservative Integration,” Physica D

[CrossRef], 132 , pp. 165–174.

Bauchau, O. A., 2003, “A Self-Stabilized Algorithm for Enforcing Constraints in Multibody Systems,” Int. J. Solids Struct.

[CrossRef], 40 (13–14), pp. 3253–3271.

Betsch, P., 2005, “The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems. Part I: Holonomic Constraints,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 194 (50–52), pp. 5159–5190.

Betsch, P., and Leyendecker, S., 2006, “The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems. Part II: Multibody Dynamics,” Int. J. Numer. Methods Eng.

[CrossRef], 67 , pp. 499–552.

Betsch, P., and Steinmann, P., 2002, “A DAE Approach to Flexible Multibody Dynamics,” Multibody Syst. Dyn.

[CrossRef], 8 , pp. 367–391.

Arnold, M., 1995, “A Perturbation Analysis for the Dynamical Simulation of Mechanical Multibody Systems,” Appl. Numer. Math.

[CrossRef], 18 , pp. 37–56.

Bottasso, C. L., Bauchau, O. A., and Cardona, A., 2007, “Time-Step-Size-Independent Conditioning and Sensitivity to Perturbations in the Numerical Solution of Index Three Differential Algebraic Equations,” SIAM J. Sci. Comput. (USA), 29 (1), pp. 397–414.