Yu, W., 2007, “Efficient High-Fidelity Simulation of Multibody Systems With Composite Dimensionally Reducible Components,” J. Am. Helicopter Soc., 52 (1), pp. 49–57.

Cesnik, C. E. S., Sutyrin, V. G., and Hodges, D. H., 1993, “A Refined Composite Beam Theory Based on the Variational-Asymptotic Method,” "*Proceedings of the 34th Structures, Structural Dynamics, and Materials Conference*", La Jolla, CA, Apr., AIAA Paper No. 93-1616, pp. 2710–2720.

Popescu, B., and Hodges, D. H., 2000, “On Asymptotically Correct Timoshenko-Like Anisotropic Beam Theory,” Int. J. Solids Struct.

[CrossRef], 37 , pp. 535–558.

Cesnik, C. E. S., and Palacios, R., 2003, “Modeling Piezocomposite Actuators Embedded in Slender Structures,” "*Proceedings of the 44th AIAA/ASME/ASCHE/AHS Structures, Structural Dynamics and Materials Conference*", Norfolk, Virginia, Apr. 7–10.

Khouli, F., Langlois, R. G., and Afagh, F. F., 2007, “Analysis of Active Closed-Cross Section Slender Beams Based on Asymptotically Correct Thin-Wall Beam Theory,” Smart Mater. Struct.

[CrossRef], 16 (1), pp. 221–229.

Bauchau, O. A., DYMORE User’s and Theory Manual, Georgia Institute of Technology.

Ozbay, S., Bauchau, O., Dancila, D. S., and Armanios, E. A., 2005, “Extension-Twist Coupling Optimization in Composite Rotor Blades,” "*Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference*", Austin, TX, Apr. 18–21.

Bauchau, O. A., and Hodges, D. H., 1999, “Analysis of Nonlinear Multibody Systems With Elastic Couplings,” Multibody Syst. Dyn.

[CrossRef], 3 (2), pp. 163–188.

Bir, G. S., 2005, “Structural Dynamics Verification of Rotorcraft Comprehensive Analysis System (RCAS),” National Renewable Energy Laboratory, Technical Report No. 80401-3393.

Hodges, D. H., Hossein, S., and Ormiston, R. A., 2007, “Development of Nonlinear Beam Elements for Rotorcraft Comprehensive Analyses,” J. Am. Helicopter Soc., Helicopter Society, 52 (1), pp. 36–48.

Hodges, D. H., 1990, “A Mixed Variational Formulation Based on Exact Intrinsic Equations for Dynamics of Moving Beams,” Int. J. Solids Struct.

[CrossRef], 26 (11), pp. 1253–1273.

Leigh, E. J., and Kunz, D. L., 2007, “Simulation of a Moving Elastic Beam Using Hamilton’S Weak Principle,” AIAA J., 45 (2), pp. 471–476.

Hodges, D. H., 2003, “Geometrically Exact, Intrinsic Theory for Dynamics of Curved and Twisted Anisotropic Beams,” AIAA J., 41 (6), pp. 1131–1137.

Patil, M. J., and Hodges, D. H., 2006, “Flight Dynamics of Highly Flexible Flying Wings,” J. Aircr., 43 (6), pp. 1790–1798.

Bottasso, C. L., and Trainelli, L., 2004, “An Attempt at the Classification of Energy Decaying Schemes for Structural and Multibody Dynamics,” Multibody Syst. Dyn., 12 (2), 173–185.

Gobat, J. I., and Grosenbaugh, M. A., 2001, “Application of the Generalized-α Method to the Time Integration of the Cable Dynamics Equations,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 190 (37–38), pp. 4817–4829.

Gobat, J. I., Grosenbaugh, M. A., and Triantofyllou, M. S., 2002, “Generalized-α Time Integration Solutions for Hanging Chain Dynamics,” Woods Hole Oceanographic Institution Technical Report.

Chung, J. and Hulbert, G. M., 1993, “Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method,” ASME J. Appl. Mech.

[CrossRef], 60 (2), pp. 371–375.

Jansen, K. E., Whiting, C. H., and Hulbert, G. M., 2000, “A Genralized-α Method for Integrating the Filtered Navier–Stokes Equations With a Stabilized Finite Element Method,” Comput. Methods Appl. Mech. Eng.

[CrossRef], 190 (3–4), pp. 305–319.

Hodges, D. H., Atilgan, A. R., Cesnik, C. E. S., and Fulton, M. V., 1992, “On a Simplified Strain Energy Function for Geometrically Nonlinear Behaviour of Anisotropic Beams,” Composites Eng., 2 (5–7), pp. 513–526.

Shabana, A. A., "*Computational Dynamics*", Wiley-Interscience, New York.

Paz, M., and Leigh, W., 2004, "*Structural Dynamics: Theory And Computation*", Kluwer Academic, Dordrecht.

Newman, S., 1999, “The Phenomenon of Helicopter Blade Sailing,” Proceedings of the Institution of Mechanical Engineers, Part G, Journal of Aerospace Engineering, **213 **(6), pp. 347–363.

Keller, J. A., and Smith, E. C., 1999, “Experimental and Theoretical Correlation of Helicopter Rotor Blade-Droop Stop Impacts,” J. Aircr.

[CrossRef], 36 (2), pp. 443–450.

Bottasso, C. L., and Bauchau, O. A., 2001, “Multibody Modeling of Engage and Disengage Operations of Helicopter Rotors,” J. Am. Helicopter Soc., 46 (4) pp. 290–300.

Bottasso, C. L., Notes on Unilateral Contact Modeling in Multibody Dynamics, Politecnico di Milano.

Bauchau, O. A., and Theron, N. J., 1996, “Energy Decaying Scheme for Non-Linear Beam Models,” Comput. Methods Appl. Mech. Eng., 134 (1–2), pp. 37–56.

Epps, J. J., and Chandra, R., 1996, “Natural Frequencies of Rotating Composite Beams With Tip Sweep,” J. Am. Helicopter Soc., 41 (1), pp. 29–36.

Hodges, D. H., Shang, X., and Cesnik, C. E. S., 1996, “Finite Element Solution of Nonlinear Intrinsic Equations for Curved Composite Beams,” J. Am. Helicopter Soc., 41 (4), pp. 313–321.

Hughes, T. J. R., 1987, "*The Finite Element Method: Linear Static and Dynamic Finite Element Analysis*", Prentice-Hall, Englewood Cliffs, NJ.