Lee, H. P., 1996, “Dynamic Response of a Beam on Multiple Supports With a Moving Mass,” Struct. Eng. Mech., 4 , pp. 303–312.

Chatterjee, P. K., Datta, T. K., and Surana, C. S., 1994, “Vibration of Continuous Bridges Under Moving Vehicles,” J. Sound Vib.

[CrossRef], 169 , pp. 619–632.

Hayashikawa, T., and Watanabe, N., 1981, “Dynamic Behavior of Continuous Beams With Moving Loads,” J. Eng. Mech., 107 , pp. 229–246.

Henchi, K., Fafard, M., Dhatt, G., and Talbot, M., 1997, “Dynamic Behaviour of Multi-Span Beams Under Moving Loads,” J. Sound Vib.

[CrossRef], 199 , pp. 33–50.

Yang, Y. B., Liao, S. S., and Lin, B. H., 1995, “Impact Formulas for Vehicles Moving Over Simple and Continuous Beams,” J. Struct. Eng.

[CrossRef], 121 , pp. 1644–1650.

Cheung, Y. K., Au, F. T. K., Zheng, D. Y., and Cheng, Y. S., 1999, “Vibration of Multi-Span Non-Uniform Bridges Under Moving Vehicles and Trains by Using Modified Beam Vibration Functions,” J. Sound Vib., 228 , pp. 611–628.

Wang, T. L., and Huang, D. Z., 1992, “Cable-Stayed Bridge Vibration Due to Road Surface Roughness,” J. Struct. Eng.

[CrossRef], 118 , pp. 1354–1374.

Marchesiello, S., Fasana, A., Garibaldi, L., and Piombo, B. A. D., 1999, “Dynamics of Multi-Span Continuous Straight Bridges Subject to Multi-Degrees of Freedom Moving Vehicle Excitation,” J. Sound Vib.

[CrossRef], 224 , pp. 541–561.

Dugush, Y. A., and Eisenberger, M., 2002, “Vibrations of Non-Uniform Continuous Beams Under Moving Loads,” J. Sound Vib.

[CrossRef], 254 , pp. 911–926.

Mead, D. J., 1996, “Wave Propagation in Continuous Periodic Structures: Research Contributions From Southampton, 1964–1995,” J. Sound Vib.

[CrossRef], 190 , pp. 495–524.

Ungar, E. E., 1966, “Steady State Response of One-Dimensional Periodic Flexural Systems,” J. Acoust. Soc. Am.

[CrossRef], 39 , pp. 887–894.

Sen Gupta, G., 1970, “Natural Flexural Waves and the Normal Mode of Periodically Supported Beams and Plates,” J. Sound Vib.

[CrossRef], 13 , pp. 89–101.

Bansal, A. S., 1979, “Flexural Wave Motion Beam-Type Disordered Periodic Systems: Coincidence Phenomenon and Sound Radiation,” J. Sound Vib., 62 , pp. 39–49.

Hodges, C. H., and Woodhouse, J., 1983, “Vibration Isolation From Irregularity in a Nearly Periodic Structure: Theory and Measurements,” J. Acoust. Soc. Am.

[CrossRef], 74 , pp. 894–905.

Cai, G. Q., and Lin, Y. K., 1991, “Localization of Wave Propagation in Disordered Periodic Structures,” AIAA J., 29 , pp. 450–456.

Bouzit, D., and Pierre, C., 1992, “Vibration Confinement Phenomena in Disordered, Mono-Coupled, Multi-Span Beams,” Trans. ASME, J. Vib. Acoust.

[CrossRef], 114 , pp. 521–530.

Pierre, C., Castanier, M. P., and Chen, W. J., 1996, “Wave Localization in Multi-Coupled Periodic Structures: Application to Truss Beams,” Appl. Mech. Rev., 49 , pp. 65–86.

Xu, M. B., and Huang, L., 2002, “Control of Multi-Span Beam Vibration by a Random Wave Reflector,” J. Sound Vib., 250 , pp. 591–608.

Law, S. S., Bu, J. Q., Zhu, X. Q., and Chan, S. L., 2006, “Vehicle Condition Surveillance on Continuous Bridges Based on Response Sensitivity,” J. Eng. Mech.

[CrossRef], 132 , pp. 78–86.

Feng, M. Q., Kim, D. K., Yi, J. -H., and Chen, Y., 2004, “Baseline Models for Bridge Performance Monitoring,” J. Eng. Mech.

[CrossRef], 130 , pp. 562–569.

Halling, M. W., Muhammad, I., and Womack, K. C., 2001, “Dynamic Field Testing for Condition Assessment of Bridge Bents,” J. Struct. Eng.

[CrossRef], 127 , pp. 161–167.

Zhu, X. Q., and Law, S. S., 1999, “Moving Forces Identification on a Multi-Span Continuous Bridge,” J. Sound Vib.

[CrossRef], 228 , pp. 377–396.

Jiang, R. J., Au, F. T. K., and Cheung, Y. K., 2003, “Identification of Masses Moving on Multi-Span Beams Based on a Genetic Algorithm,” Comput. Struc., 81 , pp. 2137–2148.

Wu, T. X., and Thompson, D. J., 2000, “Application of a Multiple-Beam Model for Lateral Vibration Analysis of a Discretely Supported Rail at High Frequencies,” J. Acoust. Soc. Am.

[CrossRef], 108 , pp. 1341–1344.

Wu, T. X., and Thompson, D. J., 1999, “Analysis of Lateral Vibration Behaviour of Railway Track at High Frequencies Using a Continuously Supported Multiple Beam Model,” J. Acoust. Soc. Am.

[CrossRef], 106 , pp. 1369–1376.

Remington, P. J., 1987, “Wheel/Rail Rolling Noise—Part I: Theoretical Analysis,” J. Acoust. Soc. Am.

[CrossRef], 81 , pp. 1805–1823.

Muller, S., 1999, “A Linear Wheel-Track Model to Predict Instability and Short Pitch Corrugation,” J. Sound Vib., 227 , pp. 899–913.

Lee, H. P., 1994, “Dynamic Response of a Beam With Intermediate Point Constraints Subject to a Moving Load,” J. Sound Vib.

[CrossRef], 171 , pp. 361–368.

Zheng, D. Y., Cheung, Y. K., Au, F. T. K., and Cheng, Y. S., 1998, “Vibration of Multi-Span Non-Uniform Beams Under Moving Loads by Using Modified Beam Vibration Functions,” J. Sound Vib.

[CrossRef], 212 , pp. 455–467.

Zhu, X. Q., and LawS. S., 1999. “Moving Forces Identification on A Multi-Span Continuous Bridge,” J. Sound Vib.

[CrossRef], 228 (2), 377–396.

Lee, H. P., 1996, “Transverse Vibration of a Timoshenko Beam Acted Upon by an Accelerating Mass,” Appl. Acoust., 47 , pp. 319–330.

Cha, P. D., 2005, “A General Approach to Formulating the Frequency Equations for a Beam Carrying Miscellaneous Attachments,” J. Sound Vib., 286 , pp. 921–939.

Hamada, R., 1981, “Dynamic Analysis of a Beam Under a Moving Force: A Double Laplace Transform Solution,” J. Sound Vib., 74 , pp. 221–233.

Goel, R. P., 1976, “Free Vibrations of a Beam-Mass System With Elastically Restrained Ends,” J. Sound Vib.

[CrossRef], 47 , pp. 9–14.

Hong, S. -W., and Kim, J. -W., 1999, “Modal Analysis of Multi-Span Timoshenko Beams Connected or Supported by Resilient Joints With Damping,” J. Sound Vib.

[CrossRef], 227 , pp. 787–806.

Chang, T. P., Chang, F. I., and Liu, M. F., 2001, “On the Eigenvalues of a Viscously Damped Simple Beam Carrying Point Masses and Springs,” J. Sound Vib.

[CrossRef], 240 , pp. 769–778.

Dowell, E. H., 1979, “On Some General Properties of Combined Dynamical Systems,” ASME J. Appl. Mech., 46 , pp. 206–209.

Gürgöze, M., 1998, “On the Alternative Formulations of the Frequency Equation of a Bernoulli–Euler Beam to Which Several Spring-Mass Systems Are Attached In-Span,” J. Sound Vib.

[CrossRef], 217 , pp. 585–595.

Posiadała, B., 1997, “Free Vibrations of Uniform Timoshenko Beams With Attachments,” J. Sound Vib.

[CrossRef], 204 , pp. 359–369.

Nicholson, J. W., and Bergman, L. A., 1986, “Free Vibration of Combined Dynamical Systems,” J. Eng. Mech.

[CrossRef], 112 , pp. 1–13.

Bergman, L. A., and McFarland, D. M., 1988, “On the Vibration of a Point-Supported Linear Distributed System,” ASME J. Vib., Acoust., Stress, Reliab. Des., 110 , pp. 485–592.

Abu-Hilal, M., 2003, “Forced Vibration of Euler–Bernoulli Beams by Means of Dynamic Green Functions,” J. Sound Vib., 267 , pp. 191–207.

Kukla, S., 1997, “Application of Green Functions in Frequency Analysis of Timoshenko Beams With Oscillators,” J. Sound Vib.

[CrossRef], 205 , pp. 355–363.

Foda, M. A., and Abduljabbar, Z., 1998, “A Dynamic Green Function Formulation for the Response of a Beam Structure to a Moving Mass,” J. Sound Vib.

[CrossRef], 210 , pp. 295–306.

Leung, A. Y. T., and Zeng, S. P., 1994, “Analytical Formulation of Dynamic Stiffness,” J. Sound Vib., 177 , pp. 555–564.

Henchi, K., Fafard, M., Dhatt, G., and Talbot, M., 1997, “Dynamic Behaviour of Multi-Span Beams Under Moving Loads,” J. Sound Vib.

[CrossRef], 199 , pp. 33–50.

Wang, R. -T., and Lin, J. -S., 1998, “Vibration of Multi-Span Timoshenko Frames Due to a Moving Loads,” J. Sound Vib., 212 , pp. 417–434.

Li, W. L., 2000, “Free Vibrations of Beams With General Boundary Conditions,” J. Sound Vib.

[CrossRef], 237 , pp. 709–725.

Li, W. L., 2007, “Vibrations and Power Flow in a Coupled Beam System,” ASME J. Vibr. Acoust.

[CrossRef], 129 , pp. 616–622.

Li, W. L., Bonilha, M. W., and Xiao, J., 2005, “Prediction of the Vibrations and Power Flows Between Two Beams Connected at an Arbitrarily Angle,” Proceedings of SAE Noise and Vibration Conference , Traverse City, MI, Paper No. 05NVC-222.

Shankar, K., and Keane, A. J., 1995, “Energy Flow Predictions in a Structure of Rigidly Joined Beams Using Receptance Theory,” J. Sound Vib.

[CrossRef], 185 (5), pp. 867–890.

Tan, Y. C., 2001, “Efficient Modeling of Low- to Mid-Frequency Vibration and Power Flow in Complex Structures,” Ph.D. thesis, University of Michigan, Ann Arbor.

Engels, R. C., 1992, “Finite Element Modeling of Dynamic Behavior of Some Basic Structural Members,” ASME J. Vibr. Acoust.

[CrossRef], 114 , pp. 3–9.

Kobayashi, N., and Sugiyama, H., 2001, “Dynamics of Flexible Beam Using a Component Mode Synthesis Based Formulation,” Proceedings of ASME Design Engineering Technical Conferences , Pittsburgh, PA, Paper No. DETC2001/VIB-21351.

Li, W. L., 2002, “Comparison of Fourier Sine and Cosine Series Expansions for Beams With Arbitrary Boundary Conditions,” J. Sound Vib.

[CrossRef], 255 , pp. 185–194.