Lipkin, H., and Duffy, J., 1988, “Hybrid Twist and Wrench Control for a Robotic Manipulator,” ASME J. Mech., Transm., Autom. Des., 110 , pp. 138–144.
Manes, C., 1992, “Recovering Model Consistence for Force and Velocity Measures in Robot Hybrid Control,” IEEE International Conference on Robotics and Automation , pp. 1276–1281.
De Luca, A. D., and Manes, C., 1994, “Modeling of Robots in Contact With a Dynamic Environment,” IEEE Trans. Rob. Autom., 10 (4), pp. 542–548.
[CrossRef]Angeles, J., 2003, “A Methodology for the Optimum Dimensioning of Robotic Manipulators,” Memoria del 5o, Congreso Mexicano de Robótica , pp. 190–203.
Aghili, F., 2005, “A Unified Approach for Inverse and Direct Dynamics of Constrained Multibody Systems Based on Linear Projection Operator: Applications to Control and Simulation,” IEEE Trans. Rob. Autom., 21 (5), pp. 834–849.
[CrossRef]Kodischeck, D. E., 1985, “Robot Kinematics and Coordinate Transformation,” IEEE International Conference on Decision and Control , pp. 1–4.
Gu, Y. L., and Loh, N. K., 1987, “Control System Modeling by Using of a Canonical Transformation,” IEEE Conference on Decision and Control , pp. 1–4.
Bedrossian, N. S., 1992, “Linearizing Coordinate Transformation and Riemann Curvature,” IEEE International Conference on Decision and Control , pp. 80–84.
Spong, M. W., 1992, “Remarks on Robot Dynamics: Canonical Transformations and Riemannian Geometry,” IEEE International Conference on Robotics and Automation , pp. 554–559.
Rodriguez, G., and Kertutz-Delgado, K., 1992, “Spatial Operator Factorization and Inversion of Manipulator Mass Matrix,” IEEE Trans. Rob. Autom., 8 (1), pp. 65–76.
[CrossRef]Jain, A., and Rodriguez, G., 1995, “Diagonalized Lagrangian Robot Dynamics,” IEEE Trans. Rob. Autom., 11 (4), pp. 571–584.
[CrossRef]Loduha, T. A., and Ravani, B., 1995, “On First-Order Decoupling of Equations of Motion for Constrained Dynamical Systems,” ASME J. Appl. Mech., 62 (1), pp. 216–222.
[CrossRef]Junkins, J. L., and Schaub, H., 1997, “An Instantaneous Eigenstructure Quasivelocity Formulation for Nonlinear Multibody Dynamics,” J. Astronaut. Sci., 45 (3), pp. 279–295.
Kozlowski, K., 1998, "Modelling and Identification in Robotics", Springer-Verlag, London.
Papastavridis, J. G., 1998, “A Panoramic Overview of the Principles and Equations of Motion of Advanced Engineering Dynamics,” Appl. Mech. Rev., 51 (4), pp. 239–265.
[CrossRef]Gu, E. Y. L., 2000, “A Configuration Manifold Embedding Model for Dynamic Control of Redundant Robots,” Int. J. Robot. Res., 19 (3), pp. 289–304.
[CrossRef]Herman, P., 2005, “PD Controller for Manipulator With Kinetic Energy Term,” J. Intell. Robotic. Syst., 44 , pp. 101–121.
Herman, P., and Kozlowski, K., 2006, “A Survey of Equations of Motion in Terms of Inertial Quasi-Velocities for Serial Manipulators,” Arch. Appl. Mech., 76 (September), pp. 579–614.
[CrossRef]Sinclair, A. J., Hurtado, J. E., and Junkins, J. L., 2006, “Linear Feedback Control Using Quasi Velocities,” J. Guid. Control Dyn., 29 (6), pp. 1309–1314.
[CrossRef]Aghili, F., 2007, “Simplified Lagrangian Mechanical Systems With Constraints Using Square-Root Factorization,” Multibody Dynamics 2007, ECCOMAS Thematic Conference .
Aghili, F., 2008, “A Gauge-Invariant Formulation for Constrained Robotic Systems Using Square-Root Factorization and Unitary Transformation,” IEEE/RSJ International Conference on Intelligent Robots and Systems , pp. 2814–2821.
Kozolowski, K., and Herman, P., 2000, “A Comparison of Control Algorithm for Serial Manipulators in Terms of Quasi-Velocity,” IEEE/RSJ International Conference on Intelligent Robots and Systems , pp. 1540–1545.
Herman, P., and Kozlowski, K., 2001, “Some Remarks on Two Quasi-Velocities Approaches in PD Joint Space Control,” IEEE/RSJ International Conference on Intelligent Robots and Systems , pp. 1888–1893.
Doty, K. L., Melchiorri, C., and Bonivento, C., 1993, “A Theory of Generalized Inverses Applied to Robotics,” Int. J. Robot. Res., 12 (1), pp. 1–19.
[CrossRef]Schutter, J. D., and Bruyuinckx, H., 1996, "The Control Handbook", CRC, New York, Chap. Force Control of Robotic Manipulators, pp. 1351–1358.
Corben, H. C., and Stehle, P., 1960, "Classical Mechanics", Wiley, New York.
Meirovitch, L., 1970, “Rigid Body Dynamics,” "Methods of Analytical Dynamics", McGraw-Hill, New York, pp. 157–160.
Baruh, H., 1999, "Analytical Dynamics", McGraw-Hill, London.
Schaub, H., Tsiotras, P., and Junkins, J. L., 1995. “Principal Rotation Representations of Proper NxN Orthogonal Matrices,” Int. J. Eng. Sci., 33 (2), pp. 2277–2295.
[CrossRef]Bar-Itzhack, I. Y., 1989, “Extension of the Euler’s Theorem to n-Dimensional Spaces,” IEEE Aerosp. Electron. Syst. Mag., 25 (6), pp. 903–909.
[CrossRef]Oshman, Y., and Bar-Itzhack, I., 1985, “Eigenfactor Solution of the Matrix Riccati Equation—A Continous Square Root Algorithm,” IEEE Trans. Autom. Control, 30 (10), pp. 971–978.
[CrossRef]Klema, V. C., and Laub, A. J., 1980, “The Singular Value Decomposition: Its Computation and Some Applications,” IEEE Trans. Automat. Contr., 25 (2), pp. 164–176.
[CrossRef]Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1988, "Numerical Recipes in C: The Art of Scientific Computing", Cambridge University Press, New York.
Golub, G. H., and Loan, C. F. V., 1996, "Matrix Computations", The Johns Hopkins University Press, Baltimore, London.
Anton, H., 2003, "Contemporary Linear Algebra With Maple Manual Set", Wiley, New York.
Kane, T. R., 1961. “Dynamics of Nonholonomic Systems,” Trans. ASME, J. Appl. Mech., 28 (4), pp. 574–578.
Kane, T. R., and Levinson, D. A., 1985, "Dynamics: Theory and Applications" (McGraw-Hill Series in Mechanical Engineering ), McGraw-Hill, New York.
de Jalon, J. G., and Bayo, E., 1989, "Kinematic and Dynamic Simulation of Multibody Systems", Springer-Verlag, Berlin.
Ascher, U. M., and Petzold, L. R., 1998, "Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations", SIAM, Philadelphia.
Gear, C. W., 1971, “The Simultaneous Numerical Solution of Differential-Algebraic Equations,” IEEE Trans. Circuit Theory, 18 , pp. 89–95.
[CrossRef]Baumgarte, J., 1972, “Stabilization of Constraints and Integrals of Motion in Dynamical Systems,” Comput. Methods Appl. Mech. Eng., 1 , pp. 1–16.
[CrossRef]Rodríguez, G., 1987, "Kalman Filtering, Smoothing and Recursive Robot Arm Forward and Inverse Dynamics", pp. 624–639.
1996, "Theory of Robot Control", C.Canudas de Wit, B.Siciliano, and G.Bastin, eds., Springer, London.
LaSalle, J. P., 1960, “Some Extensions of Lyapunov’s Second Method,” IRE Trans. Circuit Theory, 7 (4), pp. 520–527.
Khalil, H. K., 1992, "Nonlinear Systems", Macmillan, New York.
Doty, K. L., Melchiorri, C., and Bonivento, C., 1993, “A Theory of Generalized Inverses Applied to Robotics,” Int. J. Robot. Res., 12 (1), pp. 1–19.
[CrossRef]Featherstone, R., and Fijany, A., 1999, “A Technique for Analyzing Constrained Rigid-Body Systems, and Its Application to Constraint Force Algorithm,” IEEE Trans. Rob. Autom., 15 (6), pp. 1140–1144.
[CrossRef]Featherstone, R., Thiebaut, S., and Khatib, O., 1999. “A General Contact Model for Dynamically-Decoupled Force-Motion Control,” IEEE International Conference on Robotics and Automation , pp. 3281–3286.