Lipkin, H., and Duffy, J., 1988, “Hybrid Twist and Wrench Control for a Robotic Manipulator,” ASME J. Mech., Transm., Autom. Des., 110 , pp. 138–144.

Manes, C., 1992, “Recovering Model Consistence for Force and Velocity Measures in Robot Hybrid Control,” IEEE International Conference on Robotics and Automation , pp. 1276–1281.

De Luca, A. D., and Manes, C., 1994, “Modeling of Robots in Contact With a Dynamic Environment,” IEEE Trans. Rob. Autom., 10 (4), pp. 542–548.

[CrossRef]Angeles, J., 2003, “A Methodology for the Optimum Dimensioning of Robotic Manipulators,” Memoria del 5o, Congreso Mexicano de Robótica , pp. 190–203.

Aghili, F., 2005, “A Unified Approach for Inverse and Direct Dynamics of Constrained Multibody Systems Based on Linear Projection Operator: Applications to Control and Simulation,” IEEE Trans. Rob. Autom., 21 (5), pp. 834–849.

[CrossRef]Kodischeck, D. E., 1985, “Robot Kinematics and Coordinate Transformation,” IEEE International Conference on Decision and Control , pp. 1–4.

Gu, Y. L., and Loh, N. K., 1987, “Control System Modeling by Using of a Canonical Transformation,” IEEE Conference on Decision and Control , pp. 1–4.

Bedrossian, N. S., 1992, “Linearizing Coordinate Transformation and Riemann Curvature,” IEEE International Conference on Decision and Control , pp. 80–84.

Spong, M. W., 1992, “Remarks on Robot Dynamics: Canonical Transformations and Riemannian Geometry,” IEEE International Conference on Robotics and Automation , pp. 554–559.

Rodriguez, G., and Kertutz-Delgado, K., 1992, “Spatial Operator Factorization and Inversion of Manipulator Mass Matrix,” IEEE Trans. Rob. Autom., 8 (1), pp. 65–76.

[CrossRef]Jain, A., and Rodriguez, G., 1995, “Diagonalized Lagrangian Robot Dynamics,” IEEE Trans. Rob. Autom., 11 (4), pp. 571–584.

[CrossRef]Loduha, T. A., and Ravani, B., 1995, “On First-Order Decoupling of Equations of Motion for Constrained Dynamical Systems,” ASME J. Appl. Mech., 62 (1), pp. 216–222.

[CrossRef]Junkins, J. L., and Schaub, H., 1997, “An Instantaneous Eigenstructure Quasivelocity Formulation for Nonlinear Multibody Dynamics,” J. Astronaut. Sci., 45 (3), pp. 279–295.

Kozlowski, K., 1998, "*Modelling and Identification in Robotics*", Springer-Verlag, London.

Papastavridis, J. G., 1998, “A Panoramic Overview of the Principles and Equations of Motion of Advanced Engineering Dynamics,” Appl. Mech. Rev., 51 (4), pp. 239–265.

[CrossRef]Gu, E. Y. L., 2000, “A Configuration Manifold Embedding Model for Dynamic Control of Redundant Robots,” Int. J. Robot. Res., 19 (3), pp. 289–304.

[CrossRef]Herman, P., 2005, “PD Controller for Manipulator With Kinetic Energy Term,” J. Intell. Robotic. Syst., 44 , pp. 101–121.

Herman, P., and Kozlowski, K., 2006, “A Survey of Equations of Motion in Terms of Inertial Quasi-Velocities for Serial Manipulators,” Arch. Appl. Mech., 76 (September), pp. 579–614.

[CrossRef]Sinclair, A. J., Hurtado, J. E., and Junkins, J. L., 2006, “Linear Feedback Control Using Quasi Velocities,” J. Guid. Control Dyn., 29 (6), pp. 1309–1314.

[CrossRef]Aghili, F., 2007, “Simplified Lagrangian Mechanical Systems With Constraints Using Square-Root Factorization,” Multibody Dynamics 2007, ECCOMAS Thematic Conference .

Aghili, F., 2008, “A Gauge-Invariant Formulation for Constrained Robotic Systems Using Square-Root Factorization and Unitary Transformation,” IEEE/RSJ International Conference on Intelligent Robots and Systems , pp. 2814–2821.

Kozolowski, K., and Herman, P., 2000, “A Comparison of Control Algorithm for Serial Manipulators in Terms of Quasi-Velocity,” IEEE/RSJ International Conference on Intelligent Robots and Systems , pp. 1540–1545.

Herman, P., and Kozlowski, K., 2001, “Some Remarks on Two Quasi-Velocities Approaches in PD Joint Space Control,” IEEE/RSJ International Conference on Intelligent Robots and Systems , pp. 1888–1893.

Doty, K. L., Melchiorri, C., and Bonivento, C., 1993, “A Theory of Generalized Inverses Applied to Robotics,” Int. J. Robot. Res., 12 (1), pp. 1–19.

[CrossRef]Schutter, J. D., and Bruyuinckx, H., 1996, "*The Control Handbook*", CRC, New York, Chap. Force Control of Robotic Manipulators, pp. 1351–1358.

Corben, H. C., and Stehle, P., 1960, "*Classical Mechanics*", Wiley, New York.

Meirovitch, L., 1970, “Rigid Body Dynamics,” "*Methods of Analytical Dynamics*", McGraw-Hill, New York, pp. 157–160.

Baruh, H., 1999, "*Analytical Dynamics*", McGraw-Hill, London.

Schaub, H., Tsiotras, P., and Junkins, J. L., 1995. “Principal Rotation Representations of Proper NxN Orthogonal Matrices,” Int. J. Eng. Sci., 33 (2), pp. 2277–2295.

[CrossRef]Bar-Itzhack, I. Y., 1989, “Extension of the Euler’s Theorem to n-Dimensional Spaces,” IEEE Aerosp. Electron. Syst. Mag., 25 (6), pp. 903–909.

[CrossRef]Oshman, Y., and Bar-Itzhack, I., 1985, “Eigenfactor Solution of the Matrix Riccati Equation—A Continous Square Root Algorithm,” IEEE Trans. Autom. Control, 30 (10), pp. 971–978.

[CrossRef]Klema, V. C., and Laub, A. J., 1980, “The Singular Value Decomposition: Its Computation and Some Applications,” IEEE Trans. Automat. Contr., 25 (2), pp. 164–176.

[CrossRef]Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1988, "*Numerical Recipes in C: The Art of Scientific Computing*", Cambridge University Press, New York.

Golub, G. H., and Loan, C. F. V., 1996, "*Matrix Computations*", The Johns Hopkins University Press, Baltimore, London.

Anton, H., 2003, "*Contemporary Linear Algebra With Maple Manual Set*", Wiley, New York.

Kane, T. R., 1961. “Dynamics of Nonholonomic Systems,” Trans. ASME, J. Appl. Mech., **28 **(4), pp. 574–578.

Kane, T. R., and Levinson, D. A., 1985, "*Dynamics: Theory and Applications*" (McGraw-Hill Series in Mechanical Engineering ), McGraw-Hill, New York.

de Jalon, J. G., and Bayo, E., 1989, "*Kinematic and Dynamic Simulation of Multibody Systems*", Springer-Verlag, Berlin.

Ascher, U. M., and Petzold, L. R., 1998, "*Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations*", SIAM, Philadelphia.

Gear, C. W., 1971, “The Simultaneous Numerical Solution of Differential-Algebraic Equations,” IEEE Trans. Circuit Theory, 18 , pp. 89–95.

[CrossRef]Baumgarte, J., 1972, “Stabilization of Constraints and Integrals of Motion in Dynamical Systems,” Comput. Methods Appl. Mech. Eng., 1 , pp. 1–16.

[CrossRef]Rodríguez, G., 1987, "*Kalman Filtering, Smoothing and Recursive Robot Arm Forward and Inverse Dynamics*", pp. 624–639.

1996, "*Theory of Robot Control*", C.Canudas de Wit, B.Siciliano, and G.Bastin, eds., Springer, London.

LaSalle, J. P., 1960, “Some Extensions of Lyapunov’s Second Method,” IRE Trans. Circuit Theory, 7 (4), pp. 520–527.

Khalil, H. K., 1992, "*Nonlinear Systems*", Macmillan, New York.

Doty, K. L., Melchiorri, C., and Bonivento, C., 1993, “A Theory of Generalized Inverses Applied to Robotics,” Int. J. Robot. Res., 12 (1), pp. 1–19.

[CrossRef]Featherstone, R., and Fijany, A., 1999, “A Technique for Analyzing Constrained Rigid-Body Systems, and Its Application to Constraint Force Algorithm,” IEEE Trans. Rob. Autom., 15 (6), pp. 1140–1144.

[CrossRef]Featherstone, R., Thiebaut, S., and Khatib, O., 1999. “A General Contact Model for Dynamically-Decoupled Force-Motion Control,” IEEE International Conference on Robotics and Automation , pp. 3281–3286.