Chakraborty, N., Berard, S., Akella, S., and Trinkle, J., 2007, “An Implicit Time-Stepping Method for Multibody Systems With Intermittent Contact,” Robotics: Science and Systems .

Berard, S., Nguyen, B., Roghani, B., Trinkle, J., Fink, J., and Kumar, V., 2007, “DaVinci Code: A Multi-Model Simulation and Analysis Tool for Multi-Body Systems,” IEEE ICRA .

Song, P., Kumar, V., and Pang, J. S., 2005, “A Two-Point Boundary-Value Approach for Planning Manipulation Tasks,” Robotics Science and Systems , Cambridge, MA.

Sueda, S., Kaufman, A., and Pai, D. K., 2008, “Musculotendon Simulation for Hand Animation,” ACM Trans. Graphics, 27 (3), pp. 83:1–83:8.

[CrossRef]Johnson, E., and Murphey, T., 2008, “Discrete and Continuous Mechanics for Tree Representations of Mechanical Systems,” IEEE International Conference on Robotics and Automation .

Plaku, E., Bekris, K. E., and Kavraki, L. E., 2007, “OOPS for Motion Planning: An Online, Open-Source, Programming System,” IEEE International Conference on Robotics and Automation .

Lötstedt, P., 1981, “Coulomb Friction in Two-Dimensional Rigid-Body Systems,” Z. Angew. Math. Mech., 61 , pp. 605–615.

[CrossRef]Lötstedt, P., 1982, “Mechanical Systems of Rigid Bodies Subject to Unilateral Constraints,” SIAM J. Appl. Math., 42 (2), pp. 281–296.

[CrossRef]Cottle, R. W., Pang, J., and Stone, R. E., 1992, "*The Linear Complementarity Problem*", Academic Press.

Lötstedt, P., 1984, “Numerical Simulation of Time-Dependent Contact and Friction Problems in Rigid Body Mechanics,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput., 5 (2), pp. 370–393.

Stewart, D., 1998, “Convergence of a Timestepping Scheme for Rigid-Body Dynamics and Resolution of Painlevé’s Problem,” Arch. Ration. Mech. Anal., 145 (3), pp. 215–260.

[CrossRef]Stewart, D., and Trinkle, J., 1996, “An Implicit Time-Stepping Scheme for Rigid Body Dynamics With Inelastic Collisions and Coulomb Friction,” Int. J. Numer. Methods Eng., 39 , pp. 2673–2691.

[CrossRef]Anitescu, M., and Potra, F., 1997, “Formulating Dynamic Multi-Rigid-Body Contact Problems With Friction as Solvable Linear Complementarity Problems,” Nonlinear Dyn., 14 , pp. 231–247.

[CrossRef]Pfeiffer, F., and Glocker, C., 1996, "

*Multibody Dynamics With Unilateral Contacts*", Wiley Series in Nonlinear Science, New York.

[CrossRef]Erleben, K., 2005, “Stable, Robust, and Versatile Multibody Dynamics Animation,” Ph.D. thesis, University of Copenhagen (DIKU).

Berard, S., 2009, “Using Simulation for Planning and Design of Robotics Systems With Intermittent Contact,” Ph.D. thesis, Rensselaer Polytechnic Institute.

Trinkle, J., Pang, J., Sudarsky, S., and Lo, G., 1997, “On Dynamic Multi-Rigid-Body Contact Problems With Coulomb Friction,” Z. Angew. Math. Mech., 77 (4), pp. 267–279.

[CrossRef]Gavrea, B. I., Anitescu, M., and Potra, F. A., 2008, “Convergence of a Class of Semi-Implicit Time-Stepping Schemes for Nonsmooth Rigid Multibody Dynamics,” SIAM J. Optim., 19 (2), pp. 969–1001.

[CrossRef]Ferris, M. C., and Munson, T. S., 2000, “Complementarity Problems in GAMS and the PATH Solver,” J. Econ. Dyn. Control, 24 (2), pp. 165–188.

[CrossRef]Vose, T. H., Umbanhowar, P., and Lynch, K. M., 2007, “Vibration-Induced Frictional Force Fields on a Rigid Plate,” IEEE International Conference on Robotics and Automation .

Vose, T. H., Umbanhowar, P., and Lynch, K. M., 2008, “Friction-Induced Velocity Fields for Point Parts Sliding on a Rigid Oscillated Plate,” Robotics: Science and Systems .

Vose, T. H., Umbanhowar, P., and Lynch, K. M., 2009, “Friction-Induced Lines of Attraction and Repulsion for Parts Sliding on an Oscillated Plate,” IEEE. Trans. Autom. Sci. Eng., 6 (4), pp. 685–699.

[CrossRef]Pang, J. -S., and Facchinei, F., 2003, "*Finite-Dimensional Variational Inequalities and Complementarity Problems (I)*", Springer Verlag, New York.

Trinkle, J., Berard, S., and Pang, J., 2005, “A Time-Stepping Scheme for Quasistatic Multibody Systems,” IEEE International Symposium on Assembly and Task Planning , pp. 174–181.

Chakraborty, N., Berard, S., Akella, S., and Trinkle, J., 2007, “An Implicit Compliant Model for Multibody Systems With Frictional Intermittent Contact,” ASME International Design Engineering Technical Conferences .

Donald, B., Xavier, P., Canny, J., and Reif, J., 1993, “Kinodynamic Motion Planning,” J. ACM, 40 (5), pp. 1048–1066.

[CrossRef]Song, P., Trinkle, J., Kumar, V., and Pang, J. -S., 2004, “Design of Part Feeding and Assembly Processes With Dynamics,” ICRA .

Luo, Z., Pang, J., and Ralph, D., 1996, "*Mathematical Programs With Equilibrium Constraints*", Cambridge University Press, Cambridge, UK.