Oldham, K. B., and Spanier, J., 1974, "*The Fractional Calculus*", Academic, New York.

Miller, K. S., and Ross, B., 1993, "*An Introduction to the Fractional Integrals and Derivatives—Theory and Application*", Wiley, New York.

Hilfer, R., 2000, "

*Application of Fractional Calculus in Physics*", World Scientific, Singapore.

[CrossRef]Zaslavsky, G. M., 2005, "*Hamiltonian Chaos and Fractional Dynamics*", Oxford University Press, Oxford.

Samko, S. G., Kilbas, A. A., and Marichev, O. I., 1993. "*Fractional Integrals and Derivatives—Theory and Applications*", Gordon and Breach, Linghorne, PA.

Podlubny, I., 1999, "*Fractional Differential Equations*", Academic, San Diego, CA.

Kilbas, A. A., Srivastava, H. H., and Trujillo, J. J., 2006, "*Theory and Applications of Fractional Differential Equations*", Elsevier, Amsterdam.

Magin, R. L., 2006, "*Fractional Calculus in Bioengineering*", Begell, Connecticut.

West, B. J., Bologna, M., and Grigolini, P., 2003, "*Physics of Fractal Operators*", Springer, New York.

Heymans, N., and Podlubny, I., 2006, “Physical Interpretation of Initial Conditions for Fractional Differential Equations With Riemann–Liouville Fractional Derivatives,” Rheol. Acta, 45 , pp. 765–771.

[CrossRef]Jesus, I. S., and Machado, J. A. T., 2008, “Fractional Control of Heat Diffusion Systems,” Nonlinear Dyn., 54 (3), pp. 263–282.

[CrossRef]Machado, J. A. T., and Galhano, M. S. A., 2008, “Statistical Fractional Dynamics,” ASME J. Comput. Nonlinear Dyn., 3 (2), p. 021201.

[CrossRef]Mainardi, F., Luchko, Y., and Pagnini, G., 2001, “The Fundamental Solution of the Space-Time Fractional Diffusion Equation,” Fractional Calculus Appl. Anal., 4 (2), pp. 153–192.

Scalas, E., Gorenflo, R., and Mainardi, F., 2004, “Uncoupled Continuous-Time Random Walks: Solution and Limiting Behavior of the Master Equation,” Phys. Rev. E, 69 , p. 011107.

[CrossRef]Agrawal, O. P., 2002, “Formulation of Euler–Lagrange Equations for Fractional Variational Problems,” J. Math. Anal. Appl., 272 , pp. 368–379.

[CrossRef]Chen, Y. Q., Vinagre, B. M., and Podlubny, I., 2004, “Continued Fraction Expansion Approaches to Discretizing Fractional Order Derivatives—An Expository Review,” Nonlinear Dyn., 38 (1–4), pp. 155–170.

[CrossRef]Tarasov, V. E., Zaslavsky, G. M., 2006, “Nonholonomic Constraints With Fractional Derivatives,” J. Phys. A, 39 (31), pp. 9797–9815.

[CrossRef]Korabel, N., Zaslavsky, G. M., and Tarasov, V. E., 2007, “Coupled Oscillators With Power-Law Interaction and Their Fractional Dynamics Analogues,” Commun. Nonlinear Sci. Numer. Simul., 12 (8), pp. 1405–1417.

[CrossRef]Agrawal, O. P., and Baleanu, D. A., 2007, “Hamiltonian Formulation and a Direct Numerical Scheme for Fractional Optimal Control Problems,” J. Vib. Control, 13 (9–10), pp. 1269–1281.

[CrossRef]Baleanu, D., 2008, “Fractional Constrained Systems and Caputo Derivatives,” ASME J. Comput. Nonlinear Dyn., 3 (2), p. 021102.

[CrossRef]Momani, S., 2006, “A Numerical Scheme for the Solution of Multi-Order Fractional Differential Equations,” Appl. Math. Comput., 182 , pp. 761–770.

[CrossRef]Kolwankar, K. M., and Gangal, A. D., 1998, “Local Fractional Fokker–Planck Equation,” Phys. Rev. Lett., 80 , pp. 214–217.

[CrossRef]Engheta, N., 1996, “Electrostaic Fractional Image Methods for Perfectly Conducting Wedges and Cones,” IEEE Trans. Antennas Propag., 44 , pp. 1565–1574.

[CrossRef]Tarasov, V. E., 2008, “Fractional Vector Calculus and Fractional Maxwell’s Equations,” Ann. Phys., 323 (11), pp. 2756–2778.

[CrossRef]Baleanu, D., Golmankhaneh, A. K., and Golmankhaneh, A. K., 2008, “Fractional Nambu Mechanics,” Int. J. Theor. Phys., 48 (4), pp. 1044–1052.

[CrossRef]Solomon, T. H., Weeks, E. R., and Swinney, H. L., 1993, “Observation of Anomalous Diffusion and Levy Flights in a Two-Dimensional Rotating Flow,” Phys. Rev. Lett., 71 (24), pp. 3975–3978.

[CrossRef]Fogleman, M. A., Fawcett, M. J., and Solomon, T. H., 2001, “Lagrangian Chaos and Correlated Lévy Flights in a Non-Beltrami Flow: Transient Versus Long-Term Transport,” Phys. Rev. E, 63 , p. 020101.

[CrossRef]Riewe, F., 1996, “Nonconservative Lagrangian and Hamiltonian Mechanics,” Phys. Rev. E, 53 , pp. 1890–1899.

[CrossRef]Riewe, F., 1997, “Mechanics With Fractional Derivatives,” Phys. Rev. E, 55 , pp. 3581–3592.

[CrossRef]Klimek, M., 2001, “Fractional Sequential Mechanics—Models With Symmetric Fractional Derivative,” Czech. J. Phys., 51 , pp. 1348–1354.

[CrossRef]Klimek, M., 2002, “Lagrangean and Hamiltonian Fractional Sequential Mechanics,” Czech. J. Phys., 52 , pp. 1247–1253.

[CrossRef]Agrawal, O. P., 2007, “Fractional Variational Calculus and the Transversality Conditions,” J. Phys. A: Math. Theor., 39 , pp. 10375–10384.

[CrossRef]Agrawal, O. P., 2007, “Generalized Euler–Lagrange Equations and Transversality Conditions for FVPs in Terms of the Caputo Derivative,” J. Vib. Control, 13 (9–10), pp. 1217–1237.

[CrossRef]Baleanu, D., and Agrawal, O. P., 2006, “Fractional Hamilton Formalism Within Caputo Derivative,” Czech. J. Phys., 56 , pp. 1087–1092.

[CrossRef]Rabei, E. M., Nawafleh, K. I., Hijjawi, R. S., Muslih, S. I., and Baleanu, D., 2007, “The Hamilton Formalism With Fractional Derivatives,” J. Math. Anal. Appl., 327 , pp. 891–897.

[CrossRef]Baleanu, D., and Muslih, S. I., 2005, “Lagrangian Formulation of Classical Fields Within Riemann–Liouville Fractional Derivatives,” Phys. Scr., 72 (2–3), pp. 119–121.

[CrossRef]Muslih, S. I., and Baleanu, D., 2005, “Hamiltonian Formulation of Systems With Linear Velocities Within Riemann–Liouville Fractional Derivatives,” J. Math. Anal. Appl., 304 (2), pp. 599–606.

[CrossRef]Baleanu, D., and Avkar, T., 2004, “Lgrangians With Linear Velocities Within Riemann–Liouville Fractional Derivatives,” Nuovo Cimento B, 119 , pp. 73–79.

Baleanu, D., Maraaba, T., and Jarad, F., 2008, “Fractional Principles With Delay,” J. Phys. A: Math. Theor., 41 (31), p. 315403.

[CrossRef]Baleanu, D., Muslih, S. I., Rabei, E., Golmankhaneh, A. K., and Golmankhaneh, A. K., 2009, “Fractional Mechanics on the Extended Phase Space,” Paper No. DETC2009-86586.

Nasiri, S. Y., Sobouti, Y., and Taati, F., 2006, “Phase Space Quantum Mechanics-Direct,” J. Math. Phys., 47 , p. 092106.

[CrossRef]