0
Technical Briefs

Uniqueness of the Geometric Representation in Large Rotation Finite Element Formulations

[+] Author and Article Information
Ahmed A. Shabana

Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, IL 60607-7022shabana@uic.edu

J. Comput. Nonlinear Dynam 5(4), 044501 (Jul 28, 2010) (5 pages) doi:10.1115/1.4001909 History: Received July 20, 2009; Revised December 11, 2009; Published July 28, 2010; Online July 28, 2010

Several finite element formulations used in the analysis of large rotation and large deformation problems employ independent interpolations for the displacement and rotation fields. As explained in this paper, three rotations defined as field variables can be sufficient to define a space curve that represents the element centerline. The frame defined by the rotations can differ from the Frenet frame of the space curve defined by the same rotation field and, therefore, such a rotation-based representation can provide measure of twist shear deformations and captures the rotation of the beam about its axis. However, the space curve defined using the rotation interpolation has a geometry that can significantly differ from the geometry defined by an independent displacement interpolation. Furthermore, the two different space curves defined by the two different interpolations can differ by a rigid body motion. Therefore, in these formulations, the uniqueness of the kinematic representation is an issue unless nonlinear algebraic constraint equations are used to establish relationships between the two independent displacement and rotation interpolations. Nonetheless, significant geometric and kinematic differences between two independent space curves cannot always be reduced by using restoring elastic forces. Because of the nonuniqueness of such a finite element representation, imposing continuity on higher derivatives such as the curvature vector is not straight forward as in the case of the absolute nodal coordinate formulation (ANCF) that defines unique displacement and rotation fields. ANCF finite elements allow for imposing curvature continuity without increasing the order of the interpolation or the number of nodal coordinates, as demonstrated in this paper. Furthermore, the relationship between ANCF finite elements and the B-spline representation used in computational geometry can be established, allowing for a straight forward integration of computer aided design and analysis.

Copyright © 2010 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In