Adrianova, L. Ya., 1995, "*Introduction to Linear Systems of Differential Equations*", Translations of Mathematical Monographs , AMS, Providence, RI, Vol. 146 .

Dieci, L., and Van Vleck, E. S., 2002, “Lyapunov Spectral Intervals: Theory and Computation,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal., 40 , pp. 516–542.

[CrossRef]Dieci, L., and Van Vleck, E. S., 2002, “Lyapunov and Other Spectra: A Survey,” "*Preservation of Stability Under Discretization*", D.Estep and S.Tavener, eds., SIAM, Philadelphia, PA.

Dieci, L., and Van Vleck, E. S., 2007, “Lyapunov and Sacker-Sell Spectral Intervals,” J. Dyn. Differ. Equ., 19 , pp. 265–293.

[CrossRef]Lyapunov, A., 1992, “The General Problem of the Stability of Motion,” Int. J. Control, 55 , pp. 521–590.

[CrossRef]Oseledec, V. I., 1998, “A Multiplicative Ergodic Theorem. Lyapunov Characteristic Numbers for Dynamical Systems,” Trans. Mosc. Math. Soc., 19 , pp. 197–231.

Xu, M., and Gao, Z., 2008, “Nonlinear Analysis of Road Traffic Flows in Discrete Dynamical System,” ASME J. Comput. Nonlinear Dyn., 3 , p. 021206.

[CrossRef]Dai, L., 2008, “Implementation of Periodicity Ratio in Analyzing Nonlinear Dynamic Systems: A Comparison With Lyapunov Exponent,” ASME J. Comput. Nonlinear Dyn., 3 , p. 011006.

[CrossRef]Arasteh, D., 2008, “Measures of Order in Dynamic Systems,” ASME J. Comput. Nonlinear Dyn., 3 , p. 031002.

[CrossRef]Bendiksen, O., 2000, “Localization Phenomena in Structural Dynamics,” Chaos, Solitons Fractals, 11 , pp. 1621–1660.

[CrossRef]Blomgren, P., Palacios, A., Zhu, B., Daw, S., Finney, C., Halow, J., and Pannala, S., 2007, “Bifurcation Analysis of Bubble Dynamics in Fluidized Beds,” Chaos, 17 , p. 013120.

[CrossRef]Elnashaie, E., and Grace, J., 2007, “Complexity, Bifurcation and Chaos in Natural and Man-Made Lumped and Distributed Systems,” Chem. Eng. Sci., 62 , pp. 3295–3325.

[CrossRef]Ott, E., 1993, "*Chaos in Dynamical Systems*", Cambridge University Press, New York.

Perron, O., 1930, “Die Ordnungszahlen Linearer Differentialgleichungssystemen,” Math. Z., 31 , pp. 748–766.

[CrossRef]Diliberto, S. P., 1950, “On Systems of Ordinary Differential Equations,” "*Contributions to the Theory of Nonlinear Oscillations*" (Ann. of Math. Studies 20 ), Princeton University Press, Princeton, NJ, pp. 1–38.

Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J. -M., 1980, “Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems; a Method for Computing All of Them. Part 1: Theory,” Meccanica, 15 , pp. 9–20.

[CrossRef]Wolf, A., Swift, J. B., Swinney, H. L., and Vastano, J. A., 1985, “Determining Lyapunov Exponents From a Time Series,” Physica D, 16 , pp. 285–317.

[CrossRef]Millionshchikov, V. M., 1969, “Systems With Integral Division Are Everywhere Dense in the Set of All Linear Systems of Differential Equations,” Differentsial'nye Uravneniya, 5 , pp. 1167–1170.

Millionshchikov, V. M., 1969, “Structurally Stable Properties of Linear Systems of Differential Equations,” Differentsial'nye Uravneniya, 5 , pp. 1775–1784.

Bylov, B. F., and Izobov, N. A., 1969, “Necessary and Sufficient Conditions for Stability of Characteristic Exponents of a Linear System,” Differentsial’nye Uravneniya, 5 , pp. 1794–1903.

Palmer, K. J., 1979, “The Structurally Stable Systems on the Half-Line Are Those With Exponential Dichotomy,” J. Differ. Equations, 33 , pp. 16–25.

[CrossRef]Palmer, K. J., 1982, “Exponential Dichotomy, Integral Separation and Diagonalizability of Linear Systems of Ordinary Differential Equations,” J. Differ. Equations, 43 , pp. 184–203.

[CrossRef]Palmer, K. J., 1982, “Exponential Separation, Exponential Dichotomy and Spectral Theory for Linear Systems of Ordinary Differential Equations,” J. Differ. Equations, 46 , pp. 324–345.

[CrossRef]Dieci, L., and Van Vleck, E. S., 2005, “On the Error in Computing Lyapunov Exponents by QR Methods,” Numer. Math., 101 , pp. 619–642.

[CrossRef]Dieci, L., and Van Vleck, E. S., 2006, “Perturbation Theory for Approximation of Lyapunov Exponents by QR Methods,” J. Dyn. Differ. Equ., 18 , pp. 815–840.

[CrossRef]Dieci, L., and Van Vleck, E. S., 2008, “On the Error in QR Integration,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal., 46 , pp. 1166–1189.

[CrossRef]Van Vleck, E. S., 2010, “On the Error in the Product QR Decomposition,” SIAM J. Matrix Anal. Appl., 31 , pp. 1775–1791.

[CrossRef]Dieci, L., Jolly, M. S., RosaM. S. R., and Van VleckE. S., 2008 “Error in Approximation of Lyapunov Exponents on Inertial Manifolds: The Kuramoto-Sivashinsky Equation,” Discrete Contin. Dyn. Syst., Ser. B, 9 , pp. 555–580.

Dieci, L., Russell, R. D., and Van Vleck, E. S., 1997, “On the Computation of Lyapunov Exponents for Continuous Dynamical Systems,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal., 34 , pp. 402–423.

[CrossRef]Calvo, M. P., Iserles, A., and Zanna, A., 1997, “Numerical Solution of Isospectral Flows,” Math. Comput., 66 , pp. 1461–1487.

[CrossRef]Chu, M. T., 1988, “On the Continuous Realization of Iterative Processes,” SIAM Rev., 30 , pp. 375–387.

[CrossRef]Dieci, L., and Van Vleck, E. S., 1995, “Computation of a Few Lyapunov Exponents for Continuous and Discrete Dynamical Systems,” Appl. Numer. Math., 17 , pp. 275–291.

[CrossRef]Dieci, L., and Van Vleck, E. S., 1999, “Computation of Orthonormal Factors for Fundamental Solution Matrices,” Numer. Math., 83 , pp. 599–620.

Hairer, E., Nœrsett, S. P., and Wanner, G., 1993, "*Solving Ordinary Differential Equations I*", 2nd ed., Springer-Verlag, Berlin, Heidelberg.

Brown, P., and Hindmarsh, A., 1986, “Matrix Free Methods for Stiff Systems of ODEs,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal., 23 , pp. 610–638.

[CrossRef]Lorenz, E., 1995, “Predictability. A Problem Partly Solved,” Proceedings on Predictability , ECMWF, Sept. 4–8, pp. 1–18.

Lorenz, E., and Emmanuel, K., 1998, “Optimal Sites for Supplementary Weather Observations: Simulations With a Small Model,” J. Atmos. Sci., 55 , pp. 399–414.

[CrossRef]Christiansen, F., Cvitanović, P., and Putkaradze, V., 1997, “Spatiotemporal Chaos in Terms of Unstable Recurrent Patterns,” Nonlinearity, 10 , pp. 55–70.

[CrossRef]Smyrlis, Y. S., and Papageorgiou, D. T., 1991, “Predicting Chaos for Infinite-Dimensional Dynamical Systems: The Kuramoto-Sivashinsky Equation, a Case Study,” Proc. Natl. Acad. Sci. U.S.A., 88 , pp. 11129–11132.

[CrossRef]Constantin, P., and Foias, C., 1985, “Global Lyapunov Exponents, Kaplan-Yorke Formulas and the Dimension of the Attractors for 2D Navier-Stokes Equations,” Commun. Pure Appl. Math., 38 , pp. 1–27.

[CrossRef]Ruelle, D., 1989, "

*Chaotic Evolution and Strange Attractors*", Cambridge University Press, Cambridge.

[CrossRef]