Kövecses, J., and Piedboeuf, J. -C., 2003, “A Novel Approach for the Dynamic Analysis and Simulation of Constrained Mechanical Systems,” Proceedings of ASME Design Engineering Technical Conference , Chicago, IL, Sep. 2–6, Paper No. DETC2003/VIB-48314.
Aghili, F., 2003, “Inverse and Direct Dynamics of Constrained Multibody Systems Based on Orthogonal Decomposition of Generalized Force,” Proceedings of IEEE International Conference on Robotics and Automation , Taipei, Taiwan, Sep. 14–19.
Bayo, E., Jimenez, J. M., Serna, M. A., and Bastero, J. M., 1994, “Penalty Based Hamiltonian Equations for Dynamic Analysis of Constrained Mechanical Systems,” Mech. Mach. Theory, 29 , pp. 725–737.
[CrossRef]Blajer, W., 2002, “Augmented Lagrangian Formulation: Geometrical Interpretation and Application to Systems With Singularities and Redundancy,” Multibody Syst. Dyn., 8 , pp. 141–159.
[CrossRef]Wojtyra, M., and Fraczek, J., 2007, “Reactions of Redundant or Singular Constraints in Mechanisms With Rigid Links,” Proceedings of the 12th IFToMM World Congress , Besancon, France, Jun. 18–21.
Komistek, R. D., Kane, T. R., Mahfouz, M., Ochoa, J. A., and Dennis, D. A., 2005, “Knee Mechanics: A Review of Past and Present Techniques to Determine In Vivo Loads,” J. Biomech., 38 , pp. 215–228.
[CrossRef]Hatze, H., 2002, “The Fundamental Problem of Myoskeletal Inverse Dynamics and Its Implications,” J. Biomech., 35 , pp. 109–115.
[CrossRef]Brand, R. A., Petersen, D. R., Davy, D. T., Kotzar, G. M., Heiple, K. G., and Goldberg, V. M., 1994, “Comparison of Hip Force Calculations and Measurements in the Same Patient,” J. Arthroplasty, 9 , pp. 45–51.
[CrossRef]Bayo, E., García de Jalón, J., and Serna, M. A., 1988, “A Modified Lagrangian Formulation for the Dynamics Analysis of Constrained Mechanical Systems,” Comput. Methods Appl. Mech. Eng., 71 , pp. 183–195.
[CrossRef]García de Jalón, J., and Bayo, E., 1994, “Kinematic and Dynamic Simulation of Multibody Systems,” "The Real-Time Challenge" (Mechanical Engineering Series ), Springer-Verlag, New York.
Bayo, E., and Ledesma, R., 1996, “Augmented Lagrangian and Mass-Orthogonal Projection Methods for Constrained Multibody Dynamics,” Nonlinear Dyn., 9 , pp. 113–130.
[CrossRef]Cuadrado, J., Cardenal, J., and Bayo, E., 1997, “Modeling and Solution Methods for Efficient Real-Time Simulation of Multibody Dynamics,” Multibody Syst. Dyn., 1 , pp. 259–280.
[CrossRef]Nikravesh, P., 1988, "Computer-Aided Analysis of Mechanical Systems", Prentice-Hall, Englewood Cliffs, NJ.
Ambrosio, J., and Kecskeméthy, A., 2007, “Multibody Dynamics of Biomechanical Models for Human Motion via Optimization,” "Multibody Dynamics: Computational Methods and Applications", J.C.García OrdenJ.M.Goicolea, and J.Cuadrado, eds., Springer, The Netherlands, pp. 245–272.
Arnold, V. I., 1989, "Mathematical Methods of Classical Mechanics", 2nd ed., Springer-Verlag, New York.
Gauss, C. F., 1829, “Ueber ein allgemeines Grundgesetz der Mechanik,” J. Reine Angew. Math., 4 , pp. 232–235.
Redon, S., Kheddar, A., and Coquillart, S., 2002, “Gauss’ Least Constraints Principle and Rigid Body Simulations,” Proceedings of IEEE International Conference on Robotics and Automation , Washington, D.C., May 11–15, pp. 517–522.
Baumgarte, J., 1972, “Stabilization of Constraints and Integrals of Motion in Dynamical Systems,” Comput. Methods Appl. Mech. Eng., 1 , pp. 1–16.
[CrossRef]Udwadia, F. E., and Kalaba, R. E., 1996, "
Analytical Dynamics: A New Approach", 1st ed., Cambridge University, Cambridge.
[CrossRef]Fan, Y., Kalaba, R., Natsuyama, H., and Udwadia, F., 2005, “Reflections on Gauss Principle of Least Constraint,” J. Optim. Theory Appl., 127 (3), pp. 475–484.
[CrossRef]Wright, S., and Nocedal, J., 2006, "Numerical Optimization", 2nd ed., Springer, New York.
Kövecses, J., 2008, “Dynamics of Mechanical Systems and the Generalized Free-Body Diagram—Part I: General Formulation,” ASME J. Appl. Mech., 75 , p. 061012.
[CrossRef]Kövecses, J., 2008, “Dynamics of Mechanical Systems and the Generalized Free-Body Diagram—Part II: Imposition of Constraints,” ASME J. Appl. Mech., 75 , p. 061013.
[CrossRef]Bayo, E., and Avello, A., 1994, “Singularity-Free Augmented Lagrangian Algorithms for Constrained Multi-Body Dynamics,” Nonlinear Dyn., 5 , pp. 209–231.
Shabana, A., 2001, "Computational Dynamics", 2nd ed., Wiley-InterScience, New York.
Bauchau, O. A., and Laulusa, A., 2008, “Review of Classical Approaches for Constraint Enforcement in Multibody Systems,” ASME J. Comput. Nonlinear Dyn., 3 , p. 011004.
[CrossRef]Bauchau, O. A., and Laulusa, A., 2008, “Review of Contemporary Approaches for Constraint Enforcement in Multibody Systems,” ASME J. Comput. Nonlinear Dyn., 3 , p. 011005.
[CrossRef]Eriten, M., and Dankowicz, H., 2009, “A Rigorous Dynamical-System-Based Analysis of the Self-Stabilizing Influence of Muscles,” ASME J. Biomech. Eng., 131 (1), p. 011011.
[CrossRef]