In the current study, the nonlinear free vibration behavior of microbeams made of functionally graded materials (FGMs) is investigated based on the strain gradient elasticity theory and von Karman geometric nonlinearity. The nonclassical beam model is developed in the context of the Timoshenko beam theory which contains material length scale parameters to take the size effect into account. The model can reduce to the beam models based on the modified couple stress theory (MCST) and the classical beam theory (CBT) if two or all material length scale parameters are taken to be zero, respectively. The power low function is considered to describe the volume fraction of the ceramic and metal phases of the FGM microbeams. On the basis of Hamilton’s principle, the higher-order governing differential equations are obtained which are discretized along with different boundary conditions using the generalized differential quadrature method. The dimensionless linear and nonlinear frequencies of microbeams with various values of material property gradient index are calculated and compared with those obtained based on the MCST and an excellent agreement is found. Moreover, comparisons between the various beam models on the basis of linear and nonlinear types of strain gradient theory (SGT) and MCST are presented and it is observed that the difference between the frequencies obtained by the SGT and MCST is more significant for lower values of dimensionless length scale parameter.