Oldham, K. B., and Spanier, J., 1974, "*The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order*", Academic, New York, USA.

Samko, S. G., Kilbas, A. A., and Marichev, O. I., 1993, "*Fractional Integrals and Derivatives: Theory and Applications*", Gordon and Breach Science, Amsterdam, The Netherlands.

Miller, K. S., and Ross, B., 1993, "*An Introduction to the Fractional Calculus and Fractional Differential Equations*", Wiley, New York.

Podlubny, I., 1999, "*Fractional Differential Equations*", Academic, San Diego.

Oustaloup, A., 1991, "*La Commande CRONE: Commande Robuste d’Ordre Non Entier*", Hermes, Paris.

Le Méhauté, A., 1991, "*Fractal Geometries: Theory and Applications*", Penton, London.

Machado, J. A. T., 1997, “Analysis and Design of Fractional-Order Digital Control Systems,” Syst. Anal. Model. Simul., 27 , pp. 107–122.

Podlubny, I., 1999, “Fractional-Order Systems and PIλDμ-Controllers,” IEEE Trans. Autom. Control

[CrossRef], 44 (1), pp. 208–213.

Westerlund, S., 2002, "*Dead Matter Has Memory*", Causal Consulting, Kalmar.

Chen, Y. Q., and Vinagre, B. M., 2003, “A New IIR-Type Digital Fractional Order Differentiator,” Signal Process.

[CrossRef], 83 (11), pp. 2359–2365.

Tarasov, V. E., and Zaslavsky, G. M., 2006, “Fractional Dynamics of Systems With Long-Range Interaction,” Commun. Nonlinear Sci. Numer. Simul., 11 (8), pp. 885–898.

Korabel, N., Zaslavsky, G. M., and Tarasov, V. E., 2007, “Coupled Oscillators With Power-Law Interaction and Their Fractional Dynamics Analogues,” Commun. Nonlinear Sci. Numer. Simul., 12 (8), pp. 1405–1417.

Tarasov, V. E., and Zaslavsky, G. M., “Conservation Laws and Hamilton’s Equations for Systems With Long-Range Interaction and Memory,” Commun. Nonlinear Sci. Numer. Simul., in Press.

Marcos, M. G., Duarte, F. B. M., and Machado, J. A. T., “Fractional Dynamics in the Trajectory Control of Redundant Manipulators,” Commun. Nonlinear Sci. Numer. Simul., in press.

Nigmatullin, R. R., 1992, “A Fractional Integral and Its Physical Interpretation,” Theor. Math. Phys.

[CrossRef], 90 (3), pp. 242–251.

Tatom, F. B., 1995, “The Relationship Between Fractional Calculus and Fractals,” Fractals

[CrossRef], 3 (1), pp. 217–229.

Adda, F. B., 1997, “Geometric Interpretation of the Fractional Derivative,” J. Fractional Calculus, 11 , pp. 21–52.

Podlubny, I., 2002, “Geometrical and Physical Interpretation of Fractional Integration and Fractional Differentiation,” J. Fractional Calculus, 5 (4), pp. 357–366.

Machado, J. A. T., 2003, “A Probabilistic Interpretation of the Fractional-order Differentiation,” Fractional Calculus Appl. Anal., 6 (1), pp. 73–80.

Stanislavsky, A. A., 2004, “Probabilistic Interpretation of the Integral of Fractional-Order,” Theor. Math. Phys.

[CrossRef], 138 (3), pp. 418–431.

Grigolini, P., Rocco, A., and West, B. J., 1999, “Fractional Calculus as a Macroscopic Manifestation of Randomness,” Phys. Rev. E

[CrossRef], 59 (3), pp. 2603–2613.

Mainardi, F., Raberto, M., Gorenflo, R., and Scalas, E., 2000, “Fractional Calculus and Continuous-Time Finance II: The Waiting-Time Distribution,” Physica A

[CrossRef], 287 , pp. 468–481.

Zaslavsky, G. M., 2002, “Chaos, Fractional Kinetics, and Anomalous Transport,” Phys. Rep.

[CrossRef], 371 , pp. 461–580.

Gorenflo, R., Mainardi, F., Moretti, D., Pagnini, G., and Paradisi, P., 2002, “Fractional Diffusion: Probability Distributions and Random Walk Models,” Physica A

[CrossRef], 305 (1–2), pp. 106–112.

Leszczynski, J. S., 2003, “Fractional Calculus in Application to Mechanics of Multiparticle Contacts,” "*CMM-2003—Computer Methods in Mechanics*", Gliwice, Poland.

Chatterjee, A., 2005, “Statistical Origins of Fractional Derivatives in Viscoelasticity,” J. Sound Vib.

[CrossRef], 284 (3–5), pp. 1239–1245.

Meerschaert, M. M., 2006, “Fractional Calculus Models in Finance,” "*International Symposium on Fractional Calculus*", Otago University, New Zealand.

Nigmatullin, R. R., Arbuzov, A. A., Salehli, F., Giz, A., Bayrak, I., and Catalgil-Giz, H., 2007, “The First Experimental Confirmation of the Fractional Kinetics Containing the Complex-Power-Law Exponents: Dielectric Measurements of Polymerization Reactions,” Physica B

[CrossRef], 388 , pp. 418–434.

Azenha, A., and Machado, J. A. T., 1998, “On the Describing Function Method and the Prediction of Limit Cycles in Nonlinear Dynamical Systems,” "*Systems Analysis-Modelling-Simulation*", Gordon and Breach, New York, 33 , pp. 307–320.

Barbosa, R. S., and Machado, J. A. T., 2002, “Describing Function Analysis of Systems with Impacts and Backlash,” Nonlinear Dyn.

[CrossRef], 29 (1–4), pp. 235–250.

Machado, J. A. T., and Galhano, A. F., 1995, “Evaluation of Manipulator Direct Dynamics using Customized Runge–Kutta Methods,” "*Systems Analysis-Modelling-Simulation*", Gordon and Breach, New York, Vol. 17 , pp. 229–239.