Belytschko, T., Liu, W., and Moran, B., 2000, *Nonlinear Finite Elements for Continua and Structures*, Vol. 36, Wiley, New York.

Shabana, A. A., 2008, *Computational Continuum Mechanics*, Cambridge University Press, New York.

Wriggers, P., 2006, *Computational Contact Mechanics*, Springer-Verlag, Berlin.

McDevitt, T. W., and Laursen, T. A., 2000, “A Mortar-Finite Element Formulation for Frictional Contact Problems,” Int. J. Numer. Methods Eng., 48, pp. 1525–1547.

[CrossRef]Kikuchi, N., and Oden, J. T., 1988, *Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods*, Vol. 8, SIAM, Philadelphia, PA.

Khude, N., Melanz, D., Stanciulescu, I., Jayakumar, P., and Negrut, D., 2013, “A Comparison of Penalty and Lagrangean Methods for Handling Frictional Contact in Flexible Multi-Body Systems Undergoing Finite Deformations,” (in press).

Hughes, T., Taylor, R., and Kanoknukulchai, W., 1977, “A Finite Element Method for Large Displacement Contact and Impact Problems,” *Formulations and Computational Algorithms in FE Analysis*, MIT Press, Boston, MA, pp. 468–495.

Puso, M. A., and Laursen, T. A., 2004, “A Mortar Segment-To-Segment Frictional Contact Method for Large Deformations,” Comput. Methods Appl. Mech. Eng.193, pp. 4891–4913.

[CrossRef]Cundall, P., and Strack, O., 1979, “A Discrete Element Model for Granular Assemblies,” Geotechnique, 29, pp. 47–65.

[CrossRef]Shabana, A., and Yakoub, R., 2001, “Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory,” J. Mech. Des., 123, pp. 606–613.

[CrossRef]Schwab, A., and Meijaard, J., 2005, “Comparison of Three-Dimensional Flexible Beam Elements for Dynamic Analysis: Finite Element Method and Absolute Nodal Coordinate Formulation,” Proceedings of the ASME 2005 IDETC/CIE, Orlando, Florida, Nov. 5–11, pp. 24–28.

Gerstmayr, J., and Shabana, A., 2006, “Analysis of Thin Beams and Cables Using the Absolute Nodal Co-Ordinate Formulation,” Nonlinear Dyn., 45, pp. 109–130.

[CrossRef]Sopanen, J. T., and Mikkola, A. M., 2003, “Description of Elastic Forces in Absolute Nodal Coordinate Formulation,” Nonlinear Dyn., 34, pp. 53–74.

[CrossRef]Hussein, B., Sugiyama, H., and Shabana, A., 2007, “Coupled Deformation Modes in the Large Deformation Finite-Element Analysis: Problem Definition,” J. Comput. Nonlinear Dyn., 2, pp. 146–154.

[CrossRef]Sugiyama, H., and Suda, Y., 2007, “A Curved Beam Element in the Analysis of Flexible Multi-Body Systems Using the Absolute Nodal Coordinates,” Proc. Inst. Mech. Eng., Part K, 221, pp. 219–231.

[CrossRef]Sugiyama, H., Koyama, H., and Yamashita, H., 2010, “Gradient Deficient Curved Beam Element Using the Absolute Nodal Coordinate Formulation,” J. Comput. Nonlinear Dyn., 5, p. 021001.

[CrossRef]Delannay, R., Louge, M., Richard, P., Taberlet, N., and Valance, A., 2007, “Towards a Theoretical Picture of Dense Granular Flows Down Inclines,” Nature Mater., 6, pp. 99–108.

[CrossRef]Haug, E. J., Wu, S. C., and Yang, S. M., 1986, “Dynamics of Mechanical Systems With Coulomb Friction, Stiction, Impact, and Constraint Addition-Deletion-I,” Mech. Mach. Theory, 21, pp. 401–406.

[CrossRef]Khulief, Y. A., and Shabana, A. A., 1987, “A Continuous Force Model for the Impact Analysis of Flexible Multibody Systems,” Mech. Mach. Theory, 22, pp. 213–224.

[CrossRef]Lankarani, H. M., and Nikravesh, P. E., 1990, “A Contact Force Model With Hysteresis Damping for Impact Analysis of Multibody Systems,” J. Mech. Des., 112, pp. 369–376.

[CrossRef]Hunt, K. H., and Crossley, F. R. E., 1975, “Coefficient of Restitution Interpreted as Damping in Vibroimpact,” J. Appl. Mech., 42, pp. 440–445.

[CrossRef]Johnson, K. L., 1987, *Contact Mechanics*, Cambridge University, Cambridge, UK.

Timoshenko, S., and Goodier, J., 1970, *Theory of Elasticity*, McGraw-Hill, New York, p. 2.

Gonthier, Y., McPhee, J., and Lange, C., 2007, “On the Implementation of Coulomb Friction in a Volumetric-Based Model for Contact Dynamics,” Proceedings of the ASME 2007 IDETC/CIE, Las Vegas, NV, Sept. 4–7.

Cundall, P., 1971, “A Computer Model for Simulating Progressive, Large-Scale Movements in Blocky Rock Systems,” Proceedings of the Symposium of the International Society for Rock Mechanics.

Rapaport, D., 2002, “Simulational Studies of Axial Granular Segregation in a Rotating Cylinder,” Physical Review E, 65, p. 61306.

[CrossRef]Rapaport, D., 2007, “Radial and Axial Segregation of Granular Matter in a Rotating Cylinder: A Simulation Study,” Phys. Rev. E, 75, p. 031301.

[CrossRef]Silbert, L., Erta, D., Grest, G., Halsey, T., Levine, D., and Plimpton, S., 2001, “Granular Flow Down an Inclined Plane: Bagnold Scaling and Rheology,” Phys. Rev. E, 64, p. 051302.

[CrossRef]Landry, J., Grest, G., Silbert, L., and Plimpton, S., 2003, “Confined Granular Packings: Structure, Stress, and Forces,” Phys. Rev. E, 67, p. 041303.

[CrossRef]Pfeiffer, F., and Glocker, C., 1996, *Multibody Dynamics With Unilateral Contacts*, Wiley, New York.

Pang, J. S., and Stewart, D. E., 2008, “Differential Variational Inequalities,” Mathematical Program., 113, pp. 345–424.

[CrossRef]Moreau, J. J., 1983, “Standard Inelastic Shocks and the Dynamics of Unilateral Constraints: CISM Courses and Lectures,” *Unilateral Problems in Structural Analysis*, Vol. 288, G. D.Piero and F.Macieri, eds., Springer, New York, 1983, pp. 173–221.

Lotstedt, P., 1982, “Mechanical Systems of Rigid Bodies Subject to Unilateral Constraints,” SIAM J. Appl. Math., 42, pp. 281–296.

[CrossRef]Monteiro-Marques, M., 1993, *Differential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Friction, Progress in Nonlinear Differential Equations and Their Applications*, Vol. 9, Springer, New York.

Baraff, D., 1993, “Issues in Computing Contact Forces for Non-Penetrating Rigid Bodies,” Algorithmica, 10, pp. 292–352.

[CrossRef]Pang, J. S., and Trinkle, J. C., 1996, “Complementarity Formulations and Existence of Solutions of Dynamic Multi-Rigid-Body Contact Problems With Coulomb Friction,” Math. Program., 73, pp. 199–226.

[CrossRef]Trinkle, J., Pang, J. S., Sudarsky, S., and Lo, G., 1997, “On Dynamic Multi-Rigid-Body Contact Problems With Coulomb Friction,” Z. Angew. Math. Mech., 77, pp. 267–279.

[CrossRef]Stewart, D. E., and Trinkle, J. C., 1996, “An Implicit Time-Stepping Scheme for Rigid-Body Dynamics With Inelastic Collisions and Coulomb Friction,” Int. J. Numer. Methods Eng., 39, pp. 2673–2691.

[CrossRef]Anitescu, M., and Potra, F. A., 1997, “Formulating Dynamic Multi-Rigid-Body Contact Problems With Friction as Solvable Linear Complementarity Problems,” Nonlinear Dyn., 14, pp. 231–247.

[CrossRef]Anitescu, M., Potra, F. A., and Stewart, D. E., 1999, “Time-Stepping for Three-Dimensional Rigid Body Dynamics,” Comput. Methods Appl. Mech. Eng., 177: pp. 183–197.

[CrossRef]Stewart, D. E., 2000, “Rigid-Body Dynamics With Friction and Impact,” SIAM Rev., 42, pp. 3–39.

[CrossRef]Heyn, T., Mazhar, H., Tasora, A., Anitescu, M., and Negrut, D., 2009, “A Parallel Algorithm for Solving Complex Multibody Problems With Stream Processors,” Proceedings of the ECCOMAS Multibody Dynamics, Warsaw, Poland.

Tasora, A., and Anitescu, M., 2011, “A Matrix-Free Cone Complementarity Approach for Solving Large-Scale, Nonsmooth, Rigid Body Dynamics,” Comput. Methods Appl. Mech. Eng., 200, pp. 439–453.

[CrossRef]Heyn, T., Tasora, A., Anitescu, M., and Negrut, D., 2009, “A Parallel Algorithm for Solving Complex Multibody Problems With Stream Processors,” Int. J. Comput. Vision Biomech., 4, pp. 1517–1532.

[CrossRef]Boos, J., and McPhee, J., 2010, “Volumetric Contact Models and Experimental Validation,” Proceedings of the 1st Joint International Conference on Multibody System Dynamics, Lappeenranta, Finland.

Hertz, H., 1881, “On the Contact of Elastic Solids,” J. Reine Angew. Math, 92, pp. 156–171.

Goldsmith, W., 2001, *Impact: The Theory and Physical Behaviour of Colliding Solids*, Dover, New York.

Gonthier, Y., McPhee, J., Lange, C., and Piedboeuf, J., 2004, “A Regularized Contact Model With Asymmetric Damping and Dwell-Time Dependent Friction,” Multibody Syst. Dyn.11, pp. 209–233.

[CrossRef]Roy, A., Carretero, J. A., Buckham, B. J., and Nicoll, R. S., 2009, “Continuous Collision Detection of Cubic-Spline-Based Tethers in ROV Simulations,” J. Offshore Mech. Arct. Eng., 131, p. 041102.

[CrossRef]SBEL, 2011, “Simulation-Based Engineering Lab,” Department of Mechanical Engineering, University of Wisconsin, Madison, WI, Retrieved Sept. 20, 2011,

http://sbel.wisc.edu/Animations/#51Yang, B., Laursen, T. A., and Meng, X., 2005, “Two Dimensional Mortar Contact Methods for Large Deformation Frictional Sliding,” Int. J. Numer. Methods Eng., 62, pp. 1183–1225.

[CrossRef]Mazhar, H., Heyn, T., and Negrut, D., 2011, “A Scalable Parallel Method for Large Collision Detection Problems,” Multibody Syst. Dyn., 26, pp. 37–55.

[CrossRef]