Oldham, K. B., and Spanier, J., 1974, *The Fractional Calculus*, Academic, New York.

Miller, K. S., and Ross, B., 1993, *An Introduction to the Fractional Integrals and Derivatives—Theory and Application*, Wiley, New York.

Samko, S. G., Kilbas, A. A., and Marichev, I. O., 1993, *Fractional Integrals and Derivatives Theory and Applications*, Gordon and Breach, NewYork.

Hilfer, R., 2000, *Application of Fractional Calculus in Physics*, World Scientific, Singapore.

Podlubny, I., 1999, *Fractional Differential Equations*, Academic, New York.

Zaslavsky, G. M., 2005, *Hamiltonian Chaos and Fractional Dynamics*, Oxford University Press, New York.

Kilbas, A. A., Srivastava, H. H., and Trujillo, J. J., 2006, *Theory and Applications of Fractional Differential Equations*, Elsevier, Amsterdam.

Magin, R. L., 2006, *Fractional Calculus in Bioengineering*, Begell House, Connecticut.

Gorenflo, R., and Mainardi, F., 1997, *Fractional Calculus: Integral and Differential Equations of Fractional Orders, Fractals and Fractional Calculus in Continuum Mechanics*, Springer-Verlag, New York.

West, B. J., Bologna, M., and Grigolini, B., 2003, *Physics of Fractal Operators*, Springer, NewYork.

Zaslavsky, G. M., 2002, “Chaos, Fractional Kinetics, and Anomalous Transport,” Phys. Rep., 371, p. 461.

[CrossRef]Muslih, S., and Baleanu, D., 2005, “Hamiltonian Formulation of Systems With Linear Velocities Within Rieman–Liouville Fractional Derivatives,” J. Math. Anal. Appl., 304, p. 599.

[CrossRef]Baleanu, D., Muslih, S., and Tas, K., 2006, “Fractional Hamiltonian Analysis of Higher Order Derivatives Systems,” J. Math. Phys., 47, pp. 103–503.

[CrossRef]Baleanu, D., and Golmankhaneh, A. K., 2009, “The Dual Action of Rational Multi Time Hamilton Equations,” Int. J. Theor. Phys., 48, pp. 25–58.

[CrossRef]Rabei, E. M., Tarawneh, D. M., Muslih, S. I., and Baleanu, D., 2007, “Heisenberg’s Equations of Motion With Fractional Derivatives,” J. Vib. Control, 13, pp. 12–39.

[CrossRef]Gastao Frederico, S. F., and Delfim, F. M. T., 2007, “A Formulation of Noether’s Theorem for Fractional Problems of the Calculus of Variations,” J. Math. Anal. Appl., 334, p. 834.

[CrossRef]Baleanu, D., Golmankhaneh, A. K., and Golmankhaneh, A. K., 2009, “Fractional Nambu Mechanics,” Int. J. Theor. Phys., 48, pp. 10–44.

[CrossRef]Baleanu, D., and Trujillo, J. J., 2008, “On Exact Solutions of a Class of Fractional Euler-Lagrange Equations,” Nonlinear Dyn., 52, p. 331.

[CrossRef]Ortigueira, M. D., and Tenreiro Machado, J. A., 2003, “Fractional Signal Processing and Applications,” Signal Process., 83, pp. 22–85.

[CrossRef]Ortigueira, M. D., and Tenreiro Machado, J. A., 2006, “Fractional Calculus Applications in Signals and Systems,” Signal Process., 86, pp. 25–30.

[CrossRef]Tenreiro Machado, J. A., 2009, “Fractional Derivatives: Probability Interpretation and Frequency Response of Rational Approximations,” Commun. Nonlinear Sci. Numer. Simul., 14, pp. 3492–3497.

[CrossRef]Tenreiro Machado, J. A., Jesus, I. S., Galhano, A., and Cunha, J. B., 2006, “Fractional Order Electromagnetics,” Signal Process., 86, pp. 26–37.

[CrossRef]Wu, J. L., 2009, “A Wavelet Operational Method for Solving Fractional Partial Differential Equations Numerically, Appl. Math. Comput., 214(1), pp. 31–40.

[CrossRef]Lepik, U., 2009, “Solving Fractional Integral Equations by the Haar Wavelet Method,” Appl. Math. Comput., 214(2), pp. 468–478.

[CrossRef]Mujeeb ur RehmanM., and Khan, R. A., 2012, “A Numerical Method for Solving Boundary Value Problems for Fractional Differential Equations,” Appl. Math. Model., 36, pp. 894–907.

[CrossRef]Ablowitz, M. J., and Clarkson, P. A., 1990, *Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform*, Cambridge University Press, Cambridge.

Kaya, D., and El-Sayed, S. M., 2004, “A Numerical Solution of the Klein-Gordon Equation and Convergence of the Domain Decomposition Method,” Appl.Math. Comput., 156, pp. 341–353.

[CrossRef]El-Sayed, S. M., 2003, “The Decomposition Method for Studying the Klein-Gordon Equation,” Chaos, Solitons Fractals, 18, pp. 1025–1030.

[CrossRef]Yusufoglu, E., 2008, “The Variational Iteration Method for Studying the Klein-Gordon Equation,” Appl. Math. Lett., 21, pp. 669–674.

[CrossRef]Wazwaz, A. M., 2000, “A New Algorithm for Calculating Adomain Polynomials for Nonlinear Operators,” Appl. Math. Comput., 111, pp. 53–69.

[CrossRef]Hsiao, C. H., 1997, “State Analysis of Linear Time Delayed Systems via Haar Wavelets,” Math. Comput. Simul., 44(5), pp. 457–470.

[CrossRef]Shi, Z., Liu, T., and Gao, B., 2010, “Haar Wavelet Method for Solving Wave Equation,” IEEE Proceedings of the International Conference on Computer Application and System Modeling (ICCASM 2010).

Haq, F.-I., Aziz, I., and Islam, S., 2010, “A Haar wavelets Based Numerical Method for Eight-Order Boundary Value Problems,” Int. J. Math. Comput. Sci., 6, p. 1.

Li, Y., 2010, “Solving a Nonlinear Fractional Differential Equation Using Chebyshev Wavelets,” Commun. Nonlinear Sci. Numer. Simul., 15, pp. 2284–2292.

[CrossRef]Chen, J., 2007, “Analysis of Stability and Convergence of Numerical Approximation for the Riesz Fractional Reaction-Dispersion Equation,” J. Xiamen Univ. (Natural Science), 46(5), pp. 616–619.

Baleanu, D., Diethelm, K., Scalas, E., and Trujillo, J. J., 2012, *Fractional Calculus Models and Numerical Methods*, World Scientific, New York.

Li, B., and Luo, J., 2005, *Wavelet Analysis and its Application*, Electronic Industrial Publication, Beijing.

Chen, C. F., and Hsiao, C. H., 1997, “Haar Wavelet Method for Solving Lumped and Distributed-Parameter Systems,” IEEE Proc. Part D, 144(1), pp. 87–94.

[CrossRef]Lepik, U., 2007, “Numerical Solution of Evolution Equations by the Haar Wavelet Method,” Appl. Math. Comput., 185, pp. 695–704.

[CrossRef]Lepik, U., 2005, “Numerical Solution of Differential Equations Using Haar Wavelets,” Math. Comput. Simul., 68, pp. 127–143.

[CrossRef]Lepik, U., 2007, “Application of the Haar Wavelet Transform to Solving Integral and Differential Equations,” Proc. Estonian Acad. Sci. Phys. Math., 56(1), pp. 28–46.

Hsiao, C. H., and Wang, W. J., 2001, “Haar Wavelet Approach to Nonlinear Stiff Systems,” Proc. Est. Acad. Sci. Phys., Math., 57, pp. 347–353.

[CrossRef]Hariharan, G., 2010, “Solving Finite Length Beam Equation by the Haar Wavelet Method,” Int. J. Comput. Appl., 9(1), pp. 27–34.

[CrossRef]Hariharan, G., and Kannan, K., 2010, “A Comparative Study of a Haar Wavelet Method and a Restrictive Taylor’s Series Method for Solving Convection-Diffusion Equations,” Int. J. Comput. Methods Eng. Sci. Mech., 11(4), pp. 173–184.

[CrossRef]Hariharan, G., and Kannan, K., 2010, “Haar Wavelet Method for Solving Some Nonlinear Parabolic Equations,” J. Math. Chem., 48(4), pp. 1044–1061.

[CrossRef]Hariharan, G., and Kannan, K., 2010, “Haar Wavelet Method for the Solving FitzHugh-Nagumo Equation,” Int. J. Comput. Math. Sci., 2, p. 2.

Hariharan, G., 2010, “Haar Wavelet Method for Solving Sine-Gordon and Klein-Gordon Equations,” Int. J. Nonlinear Sci., 9(2), pp. 1–10.

[CrossRef]Kilicman, A., and Al Zhour, Z. A. A., 2007, “Kronecker Operational Matrices for Fractional Calculations and Some Applications,” Appl. Math. Comput.187(1), pp. 250–265.

[CrossRef]Golmankhaneh, A. K., Golmankhaneh, A. K., and Baleanu, D., 2011, “On Nonlinear Fractional Klein-Gordon Equation,” Signal Process., 91, pp. 446–451.

[CrossRef]