Samko, S. G., Kilbas, A. A., and Marichev, O. I., 1993, “Fractional Integrals and Derivatives,” *Theory and Applications*, Gordon and Breach, Langhorne, PA.

Podlubny, I., 1999, *Fractional Differential Equation*, Academic Press, San Diego.

Kilbas, A. A., Srivastava, H. M., and Trujillo, J. J., 2006, *Theory and Applications of Fractional Differential Equations*, Elsevier Science, Amsterdam.

Miller, K. S., and Ross, B., 1993, *An Introduction to the Fractional Calculus and Differential Equations*, John Wiley, New York.

West, B. J., Bologna, M., and Grogolini, P., 2003, *Physics of Fractal Operators*, Springer, New York.

Magin, R. L., 2006, *Fractional Calculus in Bioengineering*, Begell House Publisher, Inc. Connecticut.

Baleanu, D., Diethelm, K., Scalas, E., and Trujillo, J. J., 2012, *Fractional Calculus Models and Numerical Methods* (Series on Complexity, Nonlinearity and Chaos), World Scientific, New Jersey.

Machado, J. A. T., 2003, “A Probabilistic Interpretation of the Fractional-Order Differentiation,” Frac. Calc. Appl. Anal., 6(1), pp. 73–80.

Raspini, A., 2001, “Simple Solutions of the Fractional Dirac Equation of Order 23,” Phys. Scr., 64(1), pp. 20–22.

[CrossRef]Riewe, F., 1996, “Nonconservative Lagrangian and Hamiltonian Mechanics”. Phys. Rev. E., 53(2), pp. 1890–1899.

[CrossRef]Riewe, F., 1997, “Mechanics With Fractional Derivatives,” Phys. Rev. E., 55(3), pp. 3581–3592.

[CrossRef]Agrawal, O. P., 2002, “Formulation of Euler–Lagrange Equations for Fractional Variational Problems,” J. Math. Anal. Appl., 272(1), pp. 368–379.

[CrossRef]Klimek, K., 2001, “Fractional Sequential Mechanics-Models With Symmetric Fractional Derivatives,” Czech. J. Phys., 51(12), pp. 1348–1354.

[CrossRef]Baleanu, D., and Muslih, S., 2005, “Lagrangian Formulation of Classical Fields Within Riemann–Liouville Fractional Derivatives,” Phys. Scr., 72(2), pp. 119–121.

[CrossRef]Baleanu, D., and Muslih, S. I., 2005, “Formulation of Hamiltonian Equations for Fractional Variational Problems,” Czech. J. Phys., 55(6), pp. 633–642.

[CrossRef]Baleanu, D., and Avkar, T., 2004, “Lagrangians With Linear Velocities Within Riemann–Liouville Fractional Derivatives,” Nuovo Cimento B., 119(1), pp. 73–79.

Trujillo, J. J., Rivero, M., and Bonilla, B., 1999, “On a Riemann–Liouville Generalized Taylor's Formula,” J. Math. Anal. Appl., 231(1), pp. 255–265.

[CrossRef]Machado, J. A. T., and Galhano, M. S. A., 2008, “Statistical Fractional Dynamics,” ASME J. Comput. Nonlin. Dynam., 3(2), pp. 021201-1–021201-5.

[CrossRef]Momani, S., and Odibat, Z., 2007, “Numerical Approach to Differential Equations of Fractional Order,” J. Comput. Appl. Math., 207(1), pp. 96–110.

[CrossRef]Abdulaziz, O., Hashim, I., and Momani, S., 2008, “Solving Systems of Fractional Differential Equations by Homotopy Perturbation Method,” Phys. Lett. A, 372(4), pp. 451–459.

[CrossRef]Sweilam, N. H., Khader, M. M., and Al-Bar, R. F., 2007, “Numerical Studies for a Multi-Order Fractional Differential Equation Method,” Phys. Lett. A, 371(1), pp. 26–33.

[CrossRef]Saadatmandi, A., and Dehghan, M., 2010, “A New Operational Matrix for Solving Fractional-Order Differential Equations,” Comput. Math. Appl., 59(3), pp. 1326–1336.

[CrossRef]Saadatmandi, A., and Dehghan, M., 2011, “A Tau Approach for Solution of the Space Fractional Diffusion Equation,” Comput. Math. Appl., 62(3), pp. 1135–1142.

[CrossRef]Saadatmandi, A., and Dehghan, M., 2011, “A Legendre Collocation Method for Fractional Integro-Differential Equations,” J. Vib. Control, 17(13), pp. 2050–2058.

[CrossRef]Saadatmandi, A., Dehghan, M., and Azizi, M. R., 2012, “The Sinc–Legendre Collocation Method for a Class of Fractional Convection-Diffusion Equations With Variable Coefficients,” Commun. Nonlinear Sci. Numer. Simul., 17(11), pp. 4125–4136.

[CrossRef]Esmaeili, S., Shamsi, S., and Luchko, Y., 2011, “Numerical Solution of Fractional Differential Equations With a Collocation Method Based on Muntz Polynomials,” Comput. Math. Appl., 62(3), pp. 918–929.

[CrossRef]Odibat, Z., 2011, “On Legendre Polynomials Approximation With the VIM or HAM for Numerical Treatment of Nonlinear Fractional Differential Equations,” J. Comput. Appl. Math., 235(9), pp. 2956–2968.

[CrossRef]Lanczos, C., 1956, *Applied Analysis*, Prentice-Hall, Englewood Cliffs, New York.

Canuto, C., Quarteroni, A., Hussaini, M. Y., and Zang, T. A., 1988, *Spectral Methods in Fluid Dynamic*, Prentice-Hall, Englewood Cliffs, New York.

Odibat, Z. M., 2010, “Analytic Study on Linear Systems of Fractional Differential Equations,” Comput. Math. Appl., 59(3), pp. 1171–1183.

[CrossRef]Gottlieb, D., Hussaini, M. Y., and Orszg, S., 1984, *Theory and Applications of Spectral Methods in Spectral Methods for Partial Differential Equations*, (Society for Industrial and Applied Mathematics), Philadelphia, PA.