Research Papers

Adaptive Sliding Mode Control for Synchronization of a Fractional-Order Chaotic System

[+] Author and Article Information
Chunlai Li

e-mail: lichunlai33@126.com

Kalin Su

College of Physics and Electronics,
Hunan Institute of Science and Technology,
Yueyang 414006,China

Lei Wu

No. 6 Department,
Air Force Paratrooper College,
Guilin 541003,China

1Corresponding author.

Contributed by the Design Engineering Division of ASME for publication in the Journal of Computational and Nonlinear Dynamics. Manuscript received June 11, 2012; final manuscript received October 7, 2012; published online November 28, 2012. Assoc. Editor: J. A. Tenreiro Machado.

J. Comput. Nonlinear Dynam 8(3), 031005 (Nov 28, 2012) (7 pages) Paper No: CND-12-1089; doi: 10.1115/1.4007910 History: Received June 11, 2012; Revised October 07, 2012

This paper proposes a three-dimensional autonomous chaotic system which displays some interest dynamical behaviors such as invariable Lyapunov exponent spectrums and controllable signal amplitude. The corresponding fractional version of the proposed system is obtained. A single state controller for synchronization of this fractional-order chaotic system is developed based on the techniques of sliding mode control and adaptive control. Numerical simulations are provided to demonstrate the feasibility of the presented synchronization method.

Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.


Lorenz, E. N., 1963, “Deterministic Non-Periodic Flow,” J. Atmos. Sci., 20, pp. 130–141. [CrossRef]
Shahverdiev, E. M., and Shore, K. A., 2011, “Synchronization in Multiple Time Delay Chaotic Laser Diodes Subject to Incoherent Optical Feedbacks and Incoherent Optical Injection,” Nonlinear Anal: Real World Appl., 12, pp. 3114–3124. [CrossRef]
Li, C., and Yu, S., 2011, “Adaptive Chaotic Control of Permanent Magnet Synchronous Motor,” Acta Phys. Sin., 60, pp. 120505-1–120505-7.
Kwon, O. M., Park, JuH., Lee, S. M., and Cha, E. J., 2011, “A New Augmented Lyapunov-Krasovskii Functional Approach to Exponential Passivity for Neural Networks With Time-Varying Delays,” Appl. Math. Comput., 217, pp. 10231–10238. [CrossRef]
Li, C., and Li, H., 2012, “Robust Control for a Class of Chaotic and Hyperchaotic Systems Via Linear State Feedback,” Phys. Scr., 85, pp. 025007-1–025007-5. [CrossRef]
Piper, J. R., 2010, “Simple Autonomous Chaotic Circuits,” IEEE Trans. Circuits Syst., II.: Express Briefs, 57, pp. 730–734. [CrossRef]
Chen, G. R., and Ueta, T., 1999, “Yet Another Chaotic Attractor,” Int. J. Bifurcation Chaos Appl. Sci. Eng., 9, pp. 1465–1466. [CrossRef]
Lü, J. H., and Chen, G. R., 2002, “A New Chaotic Attractor Coined,” Int. J. Bifurcation Chaos Appl. Sci. Eng., 12, pp. 659–661. [CrossRef]
Liu, C. X., Liu, T., Liu, L., and Liu, K., 2004, “A New Chaotic Attractor,” Chaos, Solitons Fractals, 22, pp. 1031–1038. [CrossRef]
Qi, G. Y., Chen, G. R., and Wyk, M., 2008, “A Four-Wing Chaotic Attractor Generated from a New 3-D Quadratic Autonomous System,” Chaos, Solitons Fractals, 38, pp. 705–721. [CrossRef]
Rothstein, D., Henry, E., and Gollub, J. P., 1999, “Persistent Patterns in Transient Chaotic Fluid Mixing,” Nature401, pp. 770–772. [CrossRef]
Cuomo, K. M., Oppenheim, A. V., and Strogatz, S. H., 1993, “Synchronization of Lorenz-Based Chaotic Circuits With Applications to Communications,” IEEE Trans. Circuits Syst., II: Analog Digital Signal Process. 40, pp. 626–633. [CrossRef]
Li, C. L., 2012, “Tracking Control and Generalized Projective Synchronization of a Class of Hyperchaotic System With Unknown Parameter and Disturbance,” Commun. Nonlinear Sci. Numer. Simul., 17, pp. 405–413. [CrossRef]
Jing, Z. J., Yu, C. Y., and Chen, G. R., 2004, “Complex Dynamics in a Permanent-Magnet Synchronous Motor Model,” Chaos, Solitons Fractals, 22, pp. 831–848. [CrossRef]
Podlubny, I., Fractional Differential Equations ( Academic, San Diego, 1999).
Butzer, P. L., and Westphal, U., An Introduction to Fractional Calculus ( World Scientific, Singapore, 2000).
R.Hifer, R., Applications of Fractional Calculus in Physics ( World Scientific, New Jersey, 2001).
Ahmed, E., and Elgazzar, A. S., 2007, “On Fractional Order Differential Equations Model for Nonlocal Epidemics,” Physica A379, pp. 607–614. [CrossRef]
Ama, E. S., Aem, E. M., and Haa, E. S., 2007, “On the Fractional-Order Logistic Equation,” Appl. Math Lett., 20, pp. 817–823. [CrossRef]
Arena, P., Caponetto, R., Fortuna, L., and Porto, D., Nonlinear Noninteger Order Circuits and Systems ( World Scientific, Singapore, 2000).
Das, S., 2008, Functional Fractional Calculus for System Identification and Controls, 1st ed., Springer, New York.
Mandelbort, B. B., The Fractal Geometry of Nature ( Freeman, New York, 1983).
Tang, Y., and Fang, J. A., 2010, “Synchronization of N-Coupled Fractional-Order Chaotic Systems With Ring Connection,” Commun. Nonlinear Sci. Numer. Simul., 15, pp. 401–412. [CrossRef]
Kiani, B. A., Fallahi, K., Pariz, N., and Leung, H., 2009, “A Chaotic Secure Communication Scheme Using Fractional Chaotic Systems Based on an Extended Fractional Kalman Filter,” Commun. Nonlinear Sci. Numer. Simul., 14, pp. 863–879. [CrossRef]
Deng, W., and Li, C., 2005, “Chaos Synchronization of the Fractional Lü System,” Physica A353, pp. 61–72. [CrossRef]
Song, L., Yang, J. Y., and Xu, S. Y., 2010, “Chaos Synchronization for a Class of Nonlinear Oscillators With Fractional Order. Nonlinear Anal.: Real World Appl., 72, pp. 2326–2336.
Zhang, K., Wang, and Fang, H., 2012, “Feedback Control and Hybrid Projective Synchronization of a Fractional-Order Newton-Leipnik System,” Commun. Nonlinear Sci. Numer. Simul., 17, pp. 317–328. [CrossRef]
Lin, T., and Lee, T., 2011, “Chaos Synchronization of Uncertain Fractional-Order Chaotic Systems With Time Delay Based on Adaptive Fuzzy Sliding Mode Control,” IEEE Trans. Fuzzy Syst., 19, pp. 623–635. [CrossRef]
Wang, S., Yu, Y., and Diao, M., 2010, “Hybrid Projective Synchronization of Chaotic Fractional Order Systems With Different Dimensions,” Physica A389, pp. 4981–4988. [CrossRef]
Hegazi, A. S., and Matouk, A. E., 2011, “Dynamical Behaviors and Synchronization in the Fractional Order Hyperchaotic Chen System,” Appl. Math. Lett., 24, pp. 1938–1944. [CrossRef]
Peng, G., and Jiang, Y., 2008, “Generalized Projective Synchronization of a Class of Fractional-Order Chaotic Systems Via a Scalar Transmitted Signal,” Phys. Lett. A372, pp. 3963–3970. [CrossRef]
Matouk, A. E., 2011, Chaos, Feedback Control and Synchronization of a Fractional-Order Modified Autonomous Van der Pol–Duffing,” Commun. Nonlinear Sci. Numer. Simul., 16, pp. 975–986. [CrossRef]
Caputo, M., 1967, “Linear Models of Dissipation Whose Q is Almost Frequency Independent-II,” Geophys. J. R. Astron. Soc., 13, pp. 529–539. [CrossRef]
Tavazoei, M. S., and Haeri, M., 2008, “Chaotic Attractors in Incommensurate Fractional Order Systems,” Physica D237, pp. 2628–2637. [CrossRef]
Hu, J. B., Han, Y., and Zhao, L. D., 2009, “A Novel Stability Theorem for Fractional Systems and its Applying in Synchronizing Fractional Chaotic System Based on Back-Stepping Approach,” Acta. Phys. Sin., 58, pp. 2235–2239.


Grahic Jump Location
Fig. 3

(a) Lyapunov exponent spectrum versus d; (b) signal amplitude curve versus d

Grahic Jump Location
Fig. 4

(a) Lyapunov exponent spectrum versus e; (b) signal amplitude curve versus e

Grahic Jump Location
Fig. 5

(a) Lyapunov exponent spectrum versus f; (b) signal amplitude curve versus f

Grahic Jump Location
Fig. 2

Bifurcation diagrams system, Eq. (1), versus: (a) parameter a; (b) parameter b; (c) parameter c

Grahic Jump Location
Fig. 1

(a) x1-x2 phase portrait; (b) x2- x3 phase portrait; (c) x1-x3 phase portrait

Grahic Jump Location
Fig. 6

Phase portrait and time series of system, Eq. (1). (a) phase portrait; (b) time series.

Grahic Jump Location
Fig. 7

Chaotic attractor of fractional-order system, Eq. (9)

Grahic Jump Location
Fig. 9

Projective synchronization result: (a) time response of the states, (b) synchronization error

Grahic Jump Location
Fig. 8

Synchronization result: (a) time response of the states, (b) synchronization error




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In