Shabana, A. A., 2005, *Dynamics of Multibody Systems*, 3rd ed., Cambridge University, New York.

Rankin, C. C., and Brogan, F. A., 1984, “An Element-Independent Corotational Procedure for the Treatment of Large Rotations,” ASME J. Pressure Vessel Technol., 108(2), pp. 165–174.

[CrossRef]Kane, T. R., Ryan, R. R., and Banerjee, A. K., 1987, “Dynamics of a Cantilever Beam Attached to a Moving Base,” J. Guid. Control, 10, pp. 139–151.

[CrossRef]Belytschko, T., and Hsieh, B. J., 1973, “Nonlinear Transient Finite Element Analysis With Convected Coordinates,” Int. J. Numer. Methods Eng., 7, pp. 255–271.

[CrossRef]Simo, J. C., 1985, “A Finite Strain Beam Formulation. The Three-Dimensional Dynamic Problem, Part I,” Comput. Methods Appl. Mech. Eng., 49, pp. 55–70.

[CrossRef]Simo, J. C., and Vu-Quoc, L., 1986, “A Three-Dimensional Finite Strain Rod Model, Part II: Computational Aspects,” Comput. Meth. Appl. Mech. Eng., 58, pp. 79–116.

[CrossRef]Shabana, A. A., 1997, “Flexible Multibody Dynamics: Review of Past and Recent Developments,” Multibody Syst. Dyn., 1, pp. 189–222.

[CrossRef]Wu, G., He, X., and Pai, F., 2011, “Geometrically Exact 3D Beam Element for Arbitrary Large Rigid-Elastic Deformation Analysis of Aerospace Structures,” Finite Elem. Anal. Design, 47(4), pp. 402–412.

[CrossRef]Pai, P. F., 2007, *Highly Flexible Structures: Modeling, Computation, and Experimentation*, AIAA, Reston, VA.

Shabana, A. A., 1997, “Definition of the Slopes and the Finite Element Absolute Nodal Coordinate Formulation,” Multibody Syst. Dyn., 1(3), pp. 339–348.

[CrossRef]Escalona, J. L., Hussien, H. A., and Shabana, A. A., 1998, “Application of the Absolute Nodal Coordinate Formulation to Multibody System Dynamics,” J. Sound Vib., 5, pp. 833–851.

[CrossRef]von Dombrowski, S., 2002, “Analysis of Large Flexible Body Deformation in Multibody Systems Using Absolute Coordinates,” Multibody Syst. Dyn., 8, pp. 409–432.

[CrossRef]Dmitrochenko, O., Yoo, W. S., and Pogorelov, D., 2006, “Helicoseir as Shape of a Rotating Chain (II): 3D Theory and Simulation Using ANCF,” Multibody Syst. Dyn., 15(2), pp. 181–200.

[CrossRef]Yoo, W.-S., Dmitrochenko, O., Park, S.-J., and Lim, O.-K., 2005, “A New Thin Spatial Beam Element Using the Absolute Nodal Coordinates: Application to a Rotating Strip,” Mech. Based Des. Struct. Mach., 33(3–4), pp. 399–422.

[CrossRef]Nachbagauer, K., Gruber, P., Vetyukov, Yu., and Gerstmayr, J., 2011, “A Spatial Thin Beam Finite Element Based on the Absolute Nodal Coordinate Formulation Without Singularities,” Proceedings of the ASME 2011 International Design Engineering Technical Conference & Computers and Information in Engineering Conference, Washington, DC, Aug. 28–31, IDETC/CIE 201.

Dmitrochenko, O., and Pogorelov, D., 2003, “Generalization of Plate Finite Elements for Absolute Nodal Coordinate Formulation,” Multibody Syst. Dyn., 10(1), pp. 17–43.

[CrossRef]Dmitrochenko, O., and Mikkola, A., 2008, “Two Simple Triangular Plate Elements Based on the Absolute Nodal Coordinate Formulation,” ASME J. Comput. Nonlinear Dyn., 3(4), p. 041012.

[CrossRef]Dmitrochenko, O., and Mikkola, A., 2008, “Shear Correction of a Thin Plate Element in Absolute Nodal Coordinates,” Proceedings of 8th World Congress On Computational Mechanics (WCCMS) and 5th European Congress on Computational Methods in Applied Science and Engineering (ECCOMAS 2008), Venice, Italy, June 30–July 4.

Dmitrochenko, O., and Mikkola, A., 2009, “Shear Correction for Thin Plate Finite Elements Based on the Absolute Nodal Coordinate Formulation,” Proceedings of the ASME 2009 IDETC/CIE, San Diego, CA, Aug. 30–Sept. 2, pp. 1–9.

Sereshk, M., and Salimi, M., 2011, “Comparison of Finite Element Method Based on Nodal Displacement and Absolute Nodal Coordinate Formulation (ANCF) in Thin Shell Analysis,” Int. J. Numer. Methods Biomed. Eng., 27(8), pp. 1185–1198.

[CrossRef]Gerstmayr, J., and Schöberl, J., 2006, “A 3D Finite Element Method for Flexible Multibody Systems,” Multibody Syst. Dyn., 15, pp. 309–324.

[CrossRef]Kübler, L., Eberhard, P., and Geisler, J., 2003, “Flexible Multibody Systems With Large Deformations and Nonlinear Structural Damping Using Absolute Nodal Coordinates,” Nonlinear Dyn., 34, pp. 31–52.

[CrossRef]Dmitrochenko, O., and Mikkola, A., 2011, “Digital Nomenclature Code for Topology and Kinematics of Finite Elements Based on the Absolute Nodal Coordinate Formulation,” Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics March 1, 2011, Vol. 225, No. 1, 34–51.

Dmitrochenko, O., and Mikkola, A., 2011, “Extended Digital Nomenclature Code for Description of Complex Finite Elements and Generation of New Elements,” Mech. Based Des. Struct. Mach., 39(2), pp. 229–252.

[CrossRef]Friedman, Z., and Kosmatka, J. B., 1993, “An Improved Two-Node Timoshenko Beam Finite Element,” Comput. Struct., 47(3), pp. 473–481.

[CrossRef]Olshevskiy, A., Dmitrochenko, O., and Kim, C. W., 2013, “Three- and Four-Noded Planar Elements Using Absolute Nodal Coordinate Formulation,” Multibody Syst. Dyn., 29, pp. 255–269.

[CrossRef]Zienkiewicz, O. C., and Taylor, R. L., 1991, *The Finite Element Method: Fourth Edition. Vol 2: Solid and Fluid Mechanics*, McGraw-Hill, New York.

FelippaC., 2004, “A Compendium of FEM Integration Formulas for Symbolic Work,” Eng. Comput., 21(8), pp. 867–890.

[CrossRef]Gere, J. M., and Timoshenko, S. P., 1997, *Mechanics of Materials*, PWS Publishing, Boston, MA.

Pogorelov, D., 1997, “Some Developments in Computational Techniques in Modeling Advanced Mechanical Systems,” Proceedings of the IUTAM Symposium on Interaction Between Dynamics and Control in Advanced Mechanical Systems, pp. 313–320.

Bazeley, G. P., Cheung, Y. K., Irons, B. M., and Zienkiewicz, O. C., 1966, “Triangular Elements in Bending—Conforming and Non-Conforming Solutions,” Proceedings of the First Conference on Matrix Methods in Structural Mechanics, Air Force Flight Dynamics Laboratory, Wright Patterson Air Force Base, OH, Paper No. AFFDL-TR-66-90, pp. 547–576.