0
Research Papers

An Efficient Formulation for General-Purpose Multibody/Multiphysics Analysis

[+] Author and Article Information
Pierangelo Masarati

Associate Professor
Dipartimento di Scienze e Tecnologie
Aerospaziali,
Politecnico di Milano,
Milano 20156, Italy
e-mail: pierangelo.masarati@polimi.it

Marco Morandini

Assistant Professor
Dipartimento di Scienze e Tecnologie
Aerospaziali,
Politecnico di Milano,
Milano 20156, Italy
e-mail: marco.morandini@polimi.it

Paolo Mantegazza

Professor
Dipartimento di Scienze e Tecnologie
Aerospaziali,
Politecnico di Milano,
Milano 20156, Italy
e-mail: paolo.mantegazza@polimi.it

The modulus of the largest eigenvalue.

For a definition of differential index, see, for example, Ref. [22].

http://sourceforge.net/projects/blenderandmbdyn/, another example of the fruitful interaction with users granted by the free software development model.

1Corresponding author.

Contributed by the Design Engineering Division of ASME for publication in the Journal of Computational and Nonlinear Dynamics. Manuscript received May 31, 2013; final manuscript received October 3, 2013; published online July 11, 2014. Assoc. Editor: Javier Cuadrado.

J. Comput. Nonlinear Dynam 9(4), 041001 (Jul 11, 2014) (9 pages) Paper No: CND-13-1116; doi: 10.1115/1.4025628 History: Received May 31, 2013; Revised October 03, 2013

This paper presents a formulation for the efficient solution of general-purpose multibody/multiphysics problems. The core equations and details on structural dynamics and finite rotations handling are presented. The solution phases are illustrated. Highlights of the implementation are presented, and special features are discussed.

FIGURES IN THIS ARTICLE
<>
Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.

References

Schiehlen, W., 1997, “Multibody System Dynamics: Roots and Perspectives,” Multibody Syst. Dyn., 1(2), pp. 149–188. [CrossRef]
Shabana, A. A., 1997, “Flexible Multibody Dynamics: Review of Past and Recent Developments,” Multibody Syst. Dyn., 1(2), pp. 189–222. [CrossRef]
Shabana, A. A., 1998, Dynamics of Multibody Systems, 2nd ed., Cambridge University Press, Cambridge, UK.
Bauchau, O. A., and Kang, N. K., 1993, “A Multibody Formulation for Helicopter Structural Dynamic Analysis,” J. Am. Helicopter Soc., 38(2), pp. 3–14. [CrossRef]
Anitescu, M., and Tasora, A., 2010, “An Iterative Approach for Cone Complementarity Problems for Nonsmooth Dynamics,” Comput. Optim. Appl., 47(2), pp. 207–235. [CrossRef]
Gerstmayr, J., Dorninger, A., Eder, R., Gruber, P., Reischl, D., Saxinger, M., Schörgenhumer, M., Humer, A., Nachbagauer, K., Pechstein, A., and Vetyukov, Y., 2013, “HOTINT—A Script Language Based Framework for the Simulation of Multibody Dynamics Systems,” Proceedings of ASME IDETC/CIE, Aug. 4–7, Portland, OR.
Bauchau, O. A., and Trainelli, L., 2003, “The Vectorial Parameterization of Rotation,” Nonlinear Dyn., 32(1), pp. 71–92. [CrossRef]
Masarati, P., and Morandini, M., 2010, “Intrinsic Deformable Joints,” Multibody Syst. Dyn., 23(4), pp. 361–386. [CrossRef]
Bauchau, O. A., Li, L., Masarati, P., and Morandini, M., 2011, “Tensorial Deformation Measures for Flexible Joints,” ASME J. Comput. Nonlinear Dyn., 6(3), p. 031002. [CrossRef]
Ghiringhelli, G. L., Masarati, P., and Mantegazza, P., 2000, “A Multi-Body Implementation of Finite Volume Beams,” AIAA J., 38(1), pp. 131–138. [CrossRef]
Masarati, P., Morandini, M., Quaranta, G., and Vescovini, R., 2011, “Multibody Analysis of a Micro-Aerial Vehicle Flapping Wing,” Multibody Dynamics, J. C.Samin and P.Fisette, eds., Brussels, Belgium.
Masarati, P., Morandini, M., and Solcia, T., 2012, “A Membrane Element for Micro-Aerial Vehicle Fluid-Structure Interaction,” Proceedings of the 2nd Joint International Conference on Multibody System Dynamics, P.Eberhard and P.Ziegler, eds., Stuttgart, Germany.
Ghiringhelli, G. L., Masarati, P., Mantegazza, P., and Nixon, M. W., 1999, “Multi-Body Analysis of the 1/5 Scale Wind Tunnel Model of the V-22 Tiltrotor,” Proceedings of the American Helicopter Society 55th Annual Forum,Vol. 2, Montreal, Canada, pp. 1087–1096.
Ghiringhelli, G. L., Masarati, P., Mantegazza, P., and Nixon, M. W., 1999, “Multi-Body Analysis of a Tiltrotor Configuration,” Nonlinear Dyn., 19(4), pp. 333–357. [CrossRef]
Masarati, P., Piatak, D., Quaranta, G., Singleton, J., and Shen, J., 2008, “Soft-Inplane Tiltrotor Aeromechanics Investigation Using Two Comprehensive Multibody Solvers,” J. Am. Helicopter Soc., 53(2), pp. 179–192. [CrossRef]
Merlini, T., and Morandini, M., 2004, “The Helicoidal Modeling in Computational Finite Elasticity. Part II: Multiplicative Interpolation,” Int. J.Solids Stuct., 41(18–19), pp. 5383–5409. [CrossRef]
Merlini, T., and Morandini, M., 2013, “On Successive Differentiations of the Rotation Tensor. An Application to Nonlinear Beam Elements,” J. Mech. Mater. Struct., (in press).
Davis, T. A., 2004, “Algorithm 832: Umfpack, an Unsymmetric-Pattern Multifrontal method,” ACM Transactions on Mathematical Software, 30(2), pp. 196–199. [CrossRef]
Davis, T. A., and Palamadai Natarajan, E., 2010, “Algorithm 907: KLU, A Direct Sparse Solver for Circuit Simulation Problems,” ACM Trans. Math. Softw., 37(3), pp. 36:1–17. [CrossRef]
Morandini, M., and Mantegazza, P., 2007, “Using Dense Storage to Solve Small Sparse Linear Systems,” ACM Trans. Math. Softw., 33(1), pp. 5:1–12. [CrossRef]
Mantegazza, P., Masarati, P., Morandini, M., and Quaranta, G., 2007, “Computational and Design Aspects in Multibody Software Development,” Multibody Dynamics, Vol. 4, J. C.Garcia Orden, J. M.Goicolea, and J.Cuadrado, eds., Springer, New York, pp. 137–158.
Brenan, K. E., Campbell, S. L. V., and Petzold, L. R., 1989, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, North-Holland, New York.
Leimkuhler, B., Petzold, L. R., and Gear, C. W., 1991, “Approximation Methods for the Consistent Initialization of Differential-Algebraic Equations,” SIAM J. Numer. Anal., 28(1), pp. 205–226. [CrossRef]
Masarati, P., Attolico, M., Nixon, M. W., and Mantegazza, P., 2004, “Real-Time Multibody Analysis of Wind-Tunnel Rotorcraft Models for Virtual Experiment Purposes,” Proceedings of the American Helicopter Society 4th Decennial Specialists' Conference on Aeromechanics, Fisherman's Wharf, San Francisco, CA.
Morandini, M., Masarati, P., and Mantegazza, P., 2005, “Performance Improvements in Real-Time General-Purpose Multibody Virtual Experimenting of Rotorcraft Systems,” Proceedings of the 31st European Rotorcraft Forum, Firenze, Italy.
Cavagna, L., Fumagalli, A., Masarati, P., Morandini, M., and Mantegazza, P., 2011, “Real-Time Aeroservoelastic Analysis of Wind-Turbines by Free Multibody Software,” Multibody Dynamics: Computational Methods and Applications, Vol. 23, W.Blajer, K.Arczewski, J.Fraczek, and M.Wojtyra, eds., Springer, New York, pp. 69–86.
Solcia, T., and Masarati, P., 2011, “Efficient Multirate Simulation of Complex Multibody Systems Based on Free Software,” Proceedings of the ASME IDETC/CIE 2011, Washington, DC, Paper No. DETC2011-47306.
Quaranta, G., Masarati, P., and Mantegazza, P., 2005, “A Conservative Mesh-Free Approach for Fluid Structure Interface Problems,” Proceedings of Coupled Problems 2005, Santorini, Greece.
Alioli, M., Morandini, M., and Masarati, P., 2013, “Coupled Multibody-Fluid Dynamics Simulation of Flapping Wings,” Proceedings of the ASME IDETC/CIE, Aug. 4–7, Portland, OR, Paper No. DETC2013-12198.
Malhan, R., Baeder, J., Chopra, I., and Masarati, P., 2013, “Investigation of Aerodynamics of Flapping Wings for MAV Applications Using Experiments and CFD–CSD Analysis,” Proceedings of the American Helicopter Society 5th International Specialists Meeting on Unmanned Rotorcraft and Network Centric Operations, Scottsdale, AZ.
Masarati, P., and Sitaraman, J., 2011, “Tightly Coupled CFD/Multibody Analysis of NREL Unsteady Aerodynamic Experiment Phase VI Rotor,” Proceedings of the 49th AIAA Aerospace Sciences Meeting, Orlando, FL.
Sitaraman, J., Gundling, C., Roget, B., and Masarati, P., 2013, “Computational Study of Wind Turbine Performance and Loading Response to Turbulent Inflow Conditions,” Proceedings of the American Helicopter Society 69th Annual Forum, Phoenix, AZ, Paper No. 339.
Fumagalli, A., Masarati, P., Morandini, M., and Mantegazza, P., 2011, “Control Constraint Realization for Multibody Systems,” ASME J. Comput. Nonlinear Dyn., 6(1), p. 011002. [CrossRef]
Masarati, P., Morandini, M., and Fumagalli, A., 2013, “Control Constraint of Underactuated Aerospace Systems,” J. Comput. Nonlinear Dyn. (in press).
Fumagalli, A., and Masarati, P., 2009, “Real-Time Inverse Dynamics Control Using General-Purpose Multibody Software,” Multibody Syst. Dyn., 22(1), pp. 47–68. [CrossRef]
Masarati, P., 2013, “Computed Torque Control of Redundant Manipulators Using General-Purpose Software in Real-Time,” Multibody Syst. Dyn. (in press).
Morandini, M., Masarati, P., Bargigli, L., and Vaccani, L., 2012, “Feedforward Control Design from General-Purpose Multibody Analysis for an Original Parallel Robot Concept,” Proceedings of the 2nd Joint International Conference on Multibody System Dynamics, P.Eberhard and P.Ziegler, eds., Stuttgart, Germany.
Masarati, P., and Quaranta, G., 2013, “Coupled Bioaeroservoelastic Rotorcraft-Pilot Simulation,” Proceedings of the ASME IDETC/CIE, Aug. 4–7, Portland, OR, Paper No. DETC2013-12035.
Masarati, P., Quaranta, G., and Zanoni, A., 2013, “Dependence of Helicopter Pilots' Biodynamic Feedthrough on Upper Limbs' Muscular Activation Patterns,” Proc. Inst. Mech. Eng., Part K: J. Multibody Dyn., (in press).
Fancello, M., Masarati, P., and Morandini, M., 2013, “Adding Non-Smooth Analysis Capabilities to General-Purpose Multibody Dynamics by Co-Simulation,” Proceedings of the ASME IDETC/CIE, Aug. 4–7, Portland, OR, Paper No. DETC2013-12208.

Figures

Grahic Jump Location
Fig. 2

Solution call graph

Grahic Jump Location
Fig. 3

Spectral radius of integration scheme

Grahic Jump Location
Fig. 4

Mesh (left) to multibody model (right) communication pattern for a typical flapping wing fluid-structure coupled simulation

Grahic Jump Location
Fig. 5

PA10-like robot performing prescribed nominal (top) and obstacle avoidance (bottom) trajectories

Grahic Jump Location
Fig. 6

Helicopter pilot arm holding the collective control inceptor at 10, 50, and 90%

Grahic Jump Location
Fig. 7

Pseudocode of nonlinear problem iterative solution

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In