Park, J., 2007, “Optimal Motion Planning for Manipulator Arms Using Nonlinear Programming,” *Industrial Robotics, Programming, Simulation and Applications*, J. K. Low, ed., Verlag, Croatia.

Chong Jin, O., and Gilbert, E. G., 1996, “Growth Distances: New Measures for Object Separation and Penetration,” IEEE Trans. Robotics Autom., 12(6), pp. 888–903.

[CrossRef]Park, F., Bobrow, J., and Ploen, S., 1995, “A Lie Group Formulation of Robot Dynamics,” Int. J. Robotics Res., 14(6), pp. 609–618.

[CrossRef]Ploen, S., 1997, “Geometric Algorithms for the Dynamics and Control of Multibody Systems,” Ph.D. thesis, University of California, Irvine, CA.

Park, F. C., and Bobrow, J. E., 1994, “A Recursive Algorithm for Robot Dynamics Using Lie Groups,” Proceedings of the 1994 IEEE International Conference on Robotics and Automation, Vol. 2, pp. 1535–1540.

Martin, B., and Bobrow, J., 1999, “Minimum-Effort Motions for Open-Chain Manipulators With Task-Dependent End-Effector Constraints,” Int. J. Robotics Res., 18(2), pp. 213–224.

[CrossRef]Sohl, G. A., and Bobrow, J. E., 2001, “A Recursive Multibody Dynamics and Sensitivity Algorithm for Branched Kinematic Chains,” ASME J. Dyn. Syst. Measure. Control, 123(3), pp. 391–399.

[CrossRef]Bobrow, J. E., and Sohl, G. A., 2002, “On the Reliable Computation of Optimal Motions for Underactuated Manipulators,” Electron. J. Comp. Kinemat., 1(1).

Bobrow, J., Martin, B., Sohl, G., Wang, E., Park, F., and Kim, J., 2001, “Optimal Robot Motions for Physical Criteria,” J. Robotic Syst., 18(12), pp. 785–795.

[CrossRef]Sohl, G., 2000, “Optimal Dynamic Motion Planning for Underactuated Robots,” Ph.D. thesis, University of California, Irvine, CA.

Wang, C., Timoszyk, W., and Bobrow, J., 1999, “Weightlifting Motion Planning for a Puma 762 Robot,” Proc. IEEE International Conference on Robotics and Automation, Vol. 1, pp. 480–485.

Wang, C., 2001, “Dynamic Motion Planning for Robot Manipulators Using B-Splines,” Ph.D. thesis, University of California, Irvine, CA.

Junggon, K., Jonghyun, B., and Park, F. C., 1999, “Newton-Type Algorithms for Robot Motion Optimization,” Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 3, pp. 1842–1847.

Bobrow, J. E., Park, F. C., and Sideris, A., 2006, *Fast Motions in Biomechanics and Robotics*, Springer, Berlin.

Lee, S. H., Kim, J., Park, F. C., Kim, M., and Bobrow, J. E., 2005, “Newton-Type Algorithms for Dynamics-Based Robot Movement Optimization,” IEEE Trans. Robotics, 21(4), pp. 657–667.

[CrossRef]Xiang, Y., Arora, J., and Abdel-Malek, K., 2009, “Optimization-Based Motion Prediction of Mechanical Systems: Sensitivity Analysis,” Struct. Multidisciplin. Optim., 37(6), pp. 595–608.

[CrossRef]Xiang, Y., Chung, H., Mathai, A., Rahmatalla, S., Kim, J., Marler, T., Beck, S., Yang, J., Arora, J., and Abdel-Malek, K., 2007, “Optimization-Based Dynamic Human Walking Prediction,” SAE Technical Paper 2007-01-2489.

[CrossRef]Chung, H., Xiang, Y., Mathai, A., Rahmatalla, S., Kim, J., Marler, T., Beck, S., Yang, J., Arora, J., and Abdel-Malek, K., 2007, “A Robust Formulation for Prediction of Human Running,” DTIC, pp. 16–18.

Xiang, Y., Arora, J. S., Rahmatalla, S., and Abdel-Malek, K., 2009, “Optimization-Based Dynamic Human Walking Prediction: One Step Formulation,” Int. J. Numer. Methods Eng., 79(6), pp. 667–695.

[CrossRef]Xiang, Y., Chung, H.-J., Kim, J., Bhatt, R., Rahmatalla, S., Yang, J., Marler, T., Arora, J., and Abdel-Malek, K., 2010, “Predictive Dynamics: An Optimization-Based Novel Approach for Human Motion Simulation,” Struct. Multidisciplin. Optim., 41(3), pp. 465–479.

[CrossRef]Xiang, Y., Arora, J., and Abdel-Malek, K., 2010, “Physics-Based Modeling and Simulation of Human Walking: A Review of Optimization-Based and Other Approaches,” Struct. Multidisciplin. Optim., 42(1), pp. 1–23.

[CrossRef]Xiang, Y., 2008, “Optimization-Based Dynamic Human Walking Prediction,” Ph.D. thesis, University of Iowa, Iowa City, IA.

Kim, H., Wang, Q., Rahmatalla, S., Swan, C., Arora, J., Abdel-Malek, K., and Assouline, J., 2008, “Dynamic Motion Planning of 3D Human Locomotion Using Gradient-Based Optimization,” ASME J. Biomech. Eng., 130(3), p. 031002.

[CrossRef]Diehl, M., Ferreau, H., and Haverbeke, N., 2009, “Efficient Numerical Methods for Nonlinear MPC and Moving Horizon Estimation,” Nonlinear Model Predictive Control, 384, pp. 391–417.

[CrossRef]Lavalle, S., 2006, *Planning Algorithms*, Cambridge University Press, New York.

Barraquand, J., and Ferbach, P., 1995, “Motion Planning With Uncertainty: The Information Space Approach,” Int. Conf. Robotics Autom., 2, pp. 1341–1348.

[CrossRef]Park, W., Liu, Y., Zhou, Y., Moses, M., and Chirikjian, G., 2008, “Kinematic State Estimation and Motion Planning for Stochastic Nonholonomic Systems Using the Exponential Map,” Robotica, 26(04), pp. 419–434.

[CrossRef] [PubMed]Erdmann, M., 1984, “On Motion Planning With Uncertainty,” Masters thesis, Massachusetts Institute of Technology, Boston, MA.

Kewlani, G., Ishigami, G., and Iagnemma, K., 2009, “Stochastic Mobility-Based Path Planning in Uncertain Environments,” IROS 2009. IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1183–1189.

Hays, J., Sandu, A., Sandu, C., and Hong, D., 2011, “Motion Planning of Uncertain Fully-Actuated Dynamical Systems—An Inverse Dynamics Formulation,” ASME IDETC/CIE Conference, Washington, DC, Aug. 28–30, pp. 355–360.

Hays, J., Sandu, A., Sandu, C., and Hong, D., 2011, “Motion Planning of Uncertain Fully-Actuated Dynamical Systems—a Forward Dynamics Formulation,” ASME IDETC/CIE Conference, Washington, DC.

Hays, J., Sandu, A., Sandu, C., and Hong, D., 2011, “Motion Planning of Uncertain Under-Actuated Dynamical Systems—a Hybrid Dynamics Formulation,” Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition, Denver, CO, Nov. 11–17, pp. 729–736.

[CrossRef]Wiener, N., 1938, “The Homogeneous Chaos,” Am. J. Math., 60(4), pp. 897–936.

[CrossRef]Xiu, D., and Karniadakis, G., 2002, “The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations,” SIAM J. Sci. Comput., 24(2), pp. 619–644.

[CrossRef]Xiu, D., 2009, “Fast Numerical Methods for Stochastic Computations: A Review,” Commun. Comput. Phys., 5(2–4), pp. 242–272.

Xiu, D., and Hesthaven, J. S., 2005, “High-Order Collocation Methods for Differential Equations With Random Inputs,” SIAM J. Sci. Comput., 27(3), pp. 1118–1139.

[CrossRef]Xiu, D., 2007, “Efficient Collocational Approach for Parametric Uncertainty Analysis,” Commun. Comput. Phys., 2(2), pp. 293–309.

Sandu, A., Sandu, C., and Ahmadian, M., 2006, “Modeling Multibody Systems With Uncertainties. Part I: Theoretical and Computational Aspects,” Multibody Syst. Dyn., 15(4), pp. 369–391.

[CrossRef]Cheng, H., and Sandu, A., 2009, “Efficient Uncertainty Quantification With the Polynomial Chaos Method for Stiff Systems,” Math. Comput. Simul., 79(11), pp. 3278–3295.

[CrossRef]Wan, X., and Karniadakis, G., 2005, “An Adaptive Multi-Element Generalized Polynomial Chaos Method for Stochastic Differential Equations,” J. Comput. Phys., 209(2), pp. 617–642.

[CrossRef]Wan, X., and Karniadakis, G., 2006, “Adaptive Numerical Solutions of Stochastic Differential Equations,” Comput. Math. Appl., pp. 561–573.

Wan, X., and Karniadakis, G., 2006, “Beyond Wiener–Askey Expansions: Handling Arbitrary Pdfs,” J. Sci. Comput., 27(1), pp. 455–464.

[CrossRef]Wan, X., and Karniadakis, G., 2007, “Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures,” SIAM J. Sci. Comput., 28(3), pp. 901–928.

[CrossRef]Foo, J., Wan, X., and Karniadakis, G., 2008, “The Multi-Element Probabilistic Collocation Method: Error Analysis and Simulation,” J. Comput. Phys, 227(22), pp. 9572–9595.

[CrossRef]Foo, J., and Karniadakis, G. E., 2010, “Multi-Element Probabilistic Collocation Method in High Dimensions,” J. Comput. Phys., 229(5), pp. 1536–1557.

[CrossRef]Sandu, C., Sandu, A., and Ahmadian, M., 2006, “Modeling Multibody Systems With Uncertainties. Part II: Numerical Applications,” Multibody Syst. Dyn., 15(3), pp. 241–262.

[CrossRef]Cheng, H., and Sandu, A., 2007, “Numerical Study of Uncertainty Quantification Techniques for Implicit Stiff Systems,” Proceedings of the 45th ACM Southeast Conference, Winston-Salem, NC, pp. 367–372.

Cheng, H., and Sandu, A., 2009, “Uncertainty Quantification in 3D Air Quality Models Using Polynomial Chaoses,” Environ. Model. Software, 24(8), pp. 917–925.

[CrossRef]Cheng, H., and Sandu, A., 2009, “Uncertainty Apportionment for Air Quality Forecast Models,” Proceedings of 24th Annual ACM Symposium on Applied Computing (SAC-2009), Computational Sciences Track, Honolulu, HI, pp. 956–960.

Cheng, H., and Sandu, A., 2010, “Collocation Least-Squares Polynomial Chaos Method,” Proceedings of the 2010 Spring Simulation Multiconference (SpringSim'10), High Performance Computing Symposium (HPC-2010), Orlando, FL, p. 80.

Blanchard, E., 2010, “Polynomial Chaos Approaches to Parameter Estimation and Control Design for Mechanical Systems With Uncertain Parameters,” Ph.D. thesis, Virginia Tech, Blacksburg, VA.

Blanchard, E., Sandu, A., and Sandu, C., 2007, “Parameter Estimation Method Using an Extended Kalman Filter,” Joint North America, Asia-Pacific ISTVS Conference, Fairbanks, AK, pp. 23–26.

Blanchard, E., Sandu, A., and Sandu, C., 2009, “Parameter Estimation for Mechanical Systems Via an Explicit Representation of Uncertainty,” Eng. Comput., 26(5), pp. 541–569.

[CrossRef]Blanchard, E., Sandu, A., and Sandu, C., 2010, “Polynomial Chaos-Based Parameter Estimation Methods Applied to a Vehicle System,” Proc. Inst. Mech. Eng., Part K: J. Multi-body Dyn., 224(1), pp. 59–81.

[CrossRef]Blanchard, E., Sandu, A., and Sandu, C., 2010, “Polynomial Chaos Based Method for the LQR Problem With Uncertain Parameters in the Formulation,” Proceedings of the ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Montreal, Canada, Aug. 15–18, pp. 315–324.

[CrossRef]Blanchard, E., Sandu, C., and Sandu, A., 2007, “A Polynomial-Chaos-Based Bayesian Approach for Estimating Uncertain Parameters of Mechanical Systems,” Proceedings of the ASME IDETC 2007, 9th International Conference on Advanced Vehicle and Tire Technology, Las Vegas, NV, pp. 4–7.

[CrossRef]Blanchard, E., Sandu, C., and Sandu, A., 2009, “Comparison Between a Polynomial-Chaos-Based Bayesian Approach and a Polynomial-Chaos-Based EKF Approach for Parameter Estimation With Application to Vehicle Dynamics,” Proceedings of the ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 11th International Conference on Advanced Vehicle and Tire Technology, San Diego, CA, Aug. 30–Sept. 2, ASME Paper No. DETC2009-86402, pp. 893–904.

[CrossRef]Blanchard, E., and Sandu, D., 2007, “A Polynomial Chaos Based Bayesian Approach for Estimating Uncertain Parameters of Mechanical Systems-Part 2: Applications to Vehicle Systems,” Technical Report No. TR-07-39, Virginia Tech, Blacksburg, VA.

Blanchard, E., and Sandu, D., 2007, “A Polynomial Chaos Based Bayesian Approach for Estimating Uncertain Parameters of Mechanical Systems–Part 1: Theoretical Approach,” Technical Report No. TR-07-38, Virginia Tech, Blacksburg, VA.

Blanchard, E. D., Sandu, A., and Sandu, C., 2010, “A Polynomial Chaos-Based Kalman Filter Approach for Parameter Estimation of Mechanical Systems,” ASME J. Dyn. Syst. Measure. Control, 132(6), p. 061404.

[CrossRef]Pence, B., Hays, J., Fathy, H., Sandu, C., and Stein, J., 2013, “Vehicle Sprung Mass Estimation for Rough Terrain,” Int. J. Veh. Design61(1), pp. 3–36.

[CrossRef]Pence, B. L., Fathy, H. K., and Stein, J. L., 2009, “A Base-Excitation Approach to Polynomial Chaos-Based Estimation of Sprung Mass for Off-Road Vehicles,” ASME Dynamic Systems and Control Conference, Hollywood, CA, Oct. 12–14, ASME Paper No. DSCC2009-2641, pp. 857–864.

[CrossRef]Pence, B. L., Fathy, H. K., and Stein, J. L., 2010, “Recursive Bayesian Parameter Estimation Using Polynomial Chaos Theory,” Automatica, 47(11), pp. 2420–2424.

[CrossRef]Pence, B. L., Fathy, H. K., and Stein, J. L., 2010, “An Integrated Cost/Maximum Likelihood Approach to Recursive Polynomial Chaos Parameter Estimation,” American Control Conference (ACC), June 30–July 2, pp. 2144–2151.

Southward, S., 2007, “Real-Time Parameter ID Using Polynomial Chaos Expansions,” ASME Conf. Proc. 43033, pp. 1167–1173.

ShimpIII, S., 2008, “Vehicle Sprung Mass Parameter Estimation Using an Adaptive Polynomial-Chaos Method,” Masters thesis, Virginia Tech, Blacksburg, VA.

Marzouk, Y., and Xiu, D., 2009, “A Stochastic Collocation Approach to Bayesian Inference in Inverse Problems,” Commun. Comput. Phys., 6, pp. 826–847.

[CrossRef]Marzouk, Y. M., Najm, H. N., and Rahn, L. A., 2007, “Stochastic Spectral Methods for Efficient Bayesian Solution of Inverse Problems,” J. Comput. Phys., 224(2), pp. 560–586.

[CrossRef]Price, D., 2008, “Estimation of Uncertain Vehicle Center of Gravity Using Polynomial Chaos Expansions,” Masters thesis, Virginia Tech, Blackburg, VA.

Smith, A., Monti, A., and Ponci, F., 2007, “Indirect Measurements Via a Polynomial Chaos Observer,” IEEE Trans. Instrum. Measure., 56(3), pp. 743–752.

[CrossRef]Li, J., and Xiu, D., 2009, “A Generalized Polynomial Chaos Based Ensemble Kalman Filter With High Accuracy,” J. Comput. Phys., 228(15), pp. 5454–5469.

[CrossRef]Saad, G., Ghanem, R., and Masri, S., 2007, “Robust System Identification of Strongly Non-Linear Dynamics Using a Polynomial Chaos Based Sequential Data Assimilation Technique,” **6**, pp. 6005–6013.

Templeton, B., 2009, “A Polynomial Chaos Approach to Control Design,” Ph.D. thesis, Virginia Tech, Blacksburg, VA.

Smith, A., Monti, A., and Ponci, F., 2006, “Robust Controller Using Polynomial Chaos Theory,” Industry Applications Conference, Tampa, FL, Oct. 8–12, pp. 2511–2517.

Prempraneerach, P., Hover, F., Triantafyllou, M., and Karniadakis, G., 2010, “Uncertainty Quantification in Simulations of Power Systems: Multi-Element Polynomial Chaos Methods,” Reliability Eng. Syst. Safety, 95, pp. 632–646.

[CrossRef]Kewlani, G., and Iagnemma, K., 2009, “A Multi-Element Generalized Polynomial Chaos Approach to Analysis of Mobile Robot Dynamics Under Uncertainty,” pp. 1177–1182.

Greenwood, D., 2003, *Advanced Dynamics*, Cambridge University Press, Cambridge, UK.

Murray, R., Li, Z., Sastry, S., and Sastry, S., 1994, *A Mathematical Introduction to Robotic Manipulation*, CRC, Boca Raton, FL.

Nikravesh, P. E., 2004, *Product Engineering, an Overview of Several Formulations for Multibody Dynamics*, Springer, Berlin.

Haug, E. J., 1989, *Computer Aided Kinematics and Dynamics of Mechanical Systems*. Vol. 1: Basic Methods, Allyn & Bacon, Boston, MA.

Piegl, L. A., and Tiller, W., 1997, *The Nurbs Book*, Springer, Berlin.