0
Technical Brief

Asymmetric Magnet-Based Nonlinear Energy Sink

[+] Author and Article Information
Mohammad A. AL-Shudeifat

Aerospace Engineering,
Khalifa University of Science,
Technology & Research,
Abu Dhabi 127788, United Arab Emirates
e-mail: mohd.shudeifat@kustar.ac.ae

Manuscript received August 23, 2013; final manuscript received April 16, 2014; published online October 13, 2014. Assoc. Editor: D. Dane Quinn.

J. Comput. Nonlinear Dynam 10(1), 014502 (Oct 13, 2014) (4 pages) Paper No: CND-13-1205; doi: 10.1115/1.4027462 History: Received August 23, 2013; Revised April 16, 2014

The nonlinear energy sink (NES) is a light-weighted device used for shock mitigation in dynamic structures through its passive targeted energy transfer (TET) mechanism. Here, a new design for the NES is introduced based on using an asymmetric NES force. This force is strongly nonlinear in one side of the NES equilibrium position, whereas it is either weakly nonlinear or weakly linear in the other side. This is achieved by introducing the asymmetric magnet-based NES in which the asymmetric nonlinear magnetic repulsive force is generated by two pairs of aligned permanent magnets. Consequently, this proposed design is found to provide a considerable enhancement in the shock mitigation performance compared with the symmetric stiffness-based NESs for broadband energy inputs.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Topics: Magnets , Stiffness , Design
Your Session has timed out. Please sign back in to continue.

References

Vakakis, A. F., Gendelman, O. V., Kerschen, G., Bergman, L. A., McFarland, D. M., and Lee, Y. S., 2008, Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems, I and II, Springer-Verlag, Berlin, Germany/New York.
Gendelman, O. V., Manevitch, L. I., Vakakis, A. F., and Closkey, R. M., 2001, “Energy Pumping in Nonlinear Mechanical Oscillators: Part I—Dynamics of the Underlying Hamiltonian Systems,” ASME J. Appl. Mech., 68(1), pp. 34–41. [CrossRef]
Vakakis, A. F., and Gendelman, O. V., 2001, “Energy Pumping in Nonlinear Mechanical Oscillators: Part II—Resonance Capture,” ASME J. Appl. Mech., 68(1), pp. 42–48. [CrossRef]
Lee, Y. S., Kerschen, G., Vakakis, A. F., Panagopoulos, P., Bergman, L. A., and McFarland, D. M., 2005, “Complicated Dynamics of a Linear Oscillator With a Light, Essentially Nonlinear Attachment,” Phys. D, 204(1–2), pp. 41–69. [CrossRef]
Gourdon, E. N., Alexander, A., Taylor, C. A., Lamarque, C. H., and Pernot, S., 2007, “Nonlinear Energy Pumping Under Transient Forcing With Strongly Nonlinear Coupling: Theoretical and Experimental Results,” J. Sound Vibration, 300, pp. 522–551. [CrossRef]
Quinn, D. D., Gendelman, O. V., Kerschen, G., Sapsis, T. P., Bergman, L. A., and Vakakis, A. F., 2008, “Efficiency of Targeted Energy Transfers in Coupled Nonlinear Oscillators Associated With 1: 1 Resonance Capture: Part I,” J. Sound Vib., 311, pp. 1228–1248. [CrossRef]
Sapsis, T. P., Vakakis, A. F., Gendelman, O. V., Bergman, L. A., Kerschen, G., and Quinn, D. D., 2009, “Efficiency of Targeted Energy Transfers in Coupled Nonlinear Oscillators Associated With 1:1 Resonance Captures: Part II, Analytical Study,” J. Sound Vib., 325, pp. 297–320. [CrossRef]
McFarland, M. D., Bergman, L. A., and Vakakis, A. F., 2005, “Experimental Study of Non-Linear Energy Pumping Occurring at a Single Fast Frequency,” Int. J. Nonlinear Mech., 40, pp. 891–899. [CrossRef]
Sigalov, G., Gendelman, O. V., AL-Shudeifat, M. A., Manevitch, L. I., Vakakis, A. F., and Bergman, L. A., 2012, “Resonance Captures and Targeted Energy Transfers in an Inertially Coupled Rotational Nonlinear Energy Sink,” Nonlinear Dyn., 69(4), pp. 1693–1704. [CrossRef]
Sigalov, G., Gendelman, O. V., AL-Shudeifat, M. A., Manevitch, L. I., Vakakis, A. F., and Bergman, L. A., 2012, “Alternation of Regular and Chaotic Dynamics in a Simple Two-Degree-of-Freedom System With Nonlinear Inertial Coupling,” Chaos, 22(1), p. 013118. [CrossRef] [PubMed]
Gendelman, O. V., Sigalov, G., Manevitch, L. I., Mane, M., Vakakis, A. F., and Bergman, L. A., 2012, “Dynamics of an Eccentric Rotational Nonlinear Energy Sink,” ASME J. Appl. Mech., 79(1), p. 011012. [CrossRef]
Nucera, F., Vakakis, A. F., McFarland, D. M., Bergman, L. A., and Kerschen, G., 2007, “Targeted Energy Transfers in Vibro-Impact Oscillators for Seismic Mitigation,” Nonlinear Dyn., 50, pp. 651–677. [CrossRef]
Karayannis, I., Vakakis, A. F., and Georgiades, F., 2008, “Vibro-Impact Attachments as Shock Absorbers,” Proc. Inst. Mech. Eng., Part C, 222, pp. 1899–1908. [CrossRef]
Nucera, F., McFarland, D. M., Bergman, L. A., and Vakakis, A. F., 2010, “Application of Broadband Nonlinear Targeted Energy Transfers for Seismic Mitigation of a Shear Frame: I. Computational Results,” J. Sound Vib., 329(15), pp. 2973–2994. [CrossRef]
Lee, Y. S., Nucera, F., Vakakis, A. F., McFarland, D. M., and Bergman, L. A., 2009, “Periodic Orbits, Damped Transitions and Targeted Energy Transfers in Oscillators With Vibro-Impact Attachments,” Phys. D, 238(18), pp. 1868–1896. [CrossRef]
Georgiadis, F., Vakakis, A. F., McFarland, D. M., and Bergman, L. A., 2005, “Shock Isolation Through Passive Energy Pumping Caused by Non-Smooth Nonlinearities,” Int. J. Bifurcation Chaos Appl. Sci. Eng., 15(6), pp. 1–13. [CrossRef]
AL-Shudeifat, M. A., Wierschem, N., Quinn, D. D., Vakakis, A. F., Bergman, L. A., and Spencer, B. F., Jr., 2013, “Numerical and Experimental Investigation of a Highly Effective Single-Sided Vibro-Impact Nonlinear Energy Sink for Shock Mitigation,” Int. J. Nonlinear Mech., 25, pp. 96–109. [CrossRef]
Quinn, D. D., Wierschem, N., Hubbard, S., AL-Shudeifat, M. A., Ott, R. J., McFarland, D. M., Vakakis, A. F., and Bergman, L. A., 2012, “Equivalent Modal Damping, Stiffening and Energy Exchanges in Multi-Degree-of-Freedom Systems With Strongly Nonlinear Attachments,” J. Multibody Dyn., 226(2), pp. 122–146. [CrossRef]
Wierschem, N., Luo, J., Quinn, D. D., Hubbard, S., AL-Shudeifat, M. A., McFarland, D. M., Vakakis, A. F., Bergman, L. A., and Spencer, B. F., Jr., 2012, “Passive Damping Enhancement of a Two-Degree-of-Freedom System Through a Strongly Nonlinear Two-Degree-of-Freedom Attachment,” J. Sound Vib., 331(25), pp. 5393–5407. [CrossRef]
AL-Shudeifat, M. A., 2013, “Analytical Formulas for the Energy, Velocity and Displacement Decays of Purely Nonlinear Damped Oscillators,” J. Vib. Control, (in press). [CrossRef]
Mann, B. P., and Sims, N. D., 2009, “Energy Harvesting From the Nonlinear Oscillations of Magnetic Levitation,” J. Sound Vib., 319(1–2), pp. 515–530. [CrossRef]
Challa, V. R., Prasad, M. G., Shi, Y., and Fisher, F. T., 2008, “A Vibration Energy Harvesting Device With Bidirectional Resonance Frequency Tenability,” Smart Mater. Struct., 17(1), p. 015035. [CrossRef]

Figures

Grahic Jump Location
Fig. 7

Symmetric and asymmetric magnet-based NESs forces

Grahic Jump Location
Fig. 8

(a) Time histories of the LO displacement; (b) the NES relative displacement; and (c), (d) their corresponding wavelet transforms for initial velocity of 0.3 m/s of the LO

Grahic Jump Location
Fig. 6

(a) Time histories of the LO displacement; (b) the NES relative displacement; and (c), (d) their corresponding wavelet transforms for initial velocity of 0.1 m/s of the LO

Grahic Jump Location
Fig. 5

Percentage of the dissipated energy by the NES for different initial input velocities of the LO

Grahic Jump Location
Fig. 4

Asymmetric magnetic NES design

Grahic Jump Location
Fig. 3

(a) The magnetic NES configuration; (b) the single degree-of-freedom linear oscillator of mass M attached to the NES of mass m

Grahic Jump Location
Fig. 2

Schematic diagrams for the side view of the magnetic NES components

Grahic Jump Location
Fig. 1

The proposed design of the magnetic nonlinear energy sink

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In