0
Research Papers

Numerical Scheme for a Quadratic Type Generalized Isoperimetric Constraint Variational Problems With A-Operator

[+] Author and Article Information
Rajesh K. Pandey

Department of Mathematical Sciences,
Indian Institute of Technology (BHU),
Varanasi, Uttar Pradesh 221005, India

Om P. Agrawal

Mechanical Engineering and Energy Process,
Southern Illinois University Carbondale,
Carbondale, IL 62901
e-mail: om@engr.siu.edu

1Corresponding author.

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received June 17, 2013; final manuscript received September 21, 2014; published online January 12, 2015. Assoc. Editor: J. A. Tenreiro Machado.

J. Comput. Nonlinear Dynam 10(2), 021003 (Mar 01, 2015) (6 pages) Paper No: CND-13-1142; doi: 10.1115/1.4028630 History: Received June 17, 2013; Revised September 21, 2014; Online January 12, 2015

This paper presents a numerical scheme for a class of isoperimetric constraint variational problems (ICVPs) defined in terms of an A-operator introduced recently. In this scheme, Bernstein's polynomials are used to approximate the desired function and to reduce the problem from a functional space to an eigenvalue problem in a finite dimensional space. Properties of the eigenvalues and eigenvectors of this problem are used to obtain approximate solutions to the problem. Results for two examples are presented to demonstrate the effectiveness of the proposed scheme. In special cases, the A-operator reduces to Riemann–Liouville, Caputo, Riesz–Riemann–Liouville, and Riesz–Caputo, and several other fractional derivatives defined in the literature. Thus, the approach presented here provides a general scheme for ICVPs defined using different types of fractional derivatives. Although, only Bernstein's polynomials are used here to approximate the solutions, many other approximation schemes are possible. Effectiveness of these approximation schemes will be presented in the future. While the presented numerical scheme is applied to a quadratic type generalized ICVPs, it can also be applied to other types of problems.

FIGURES IN THIS ARTICLE
<>
Copyright © 2015 by ASME
Your Session has timed out. Please sign back in to continue.

References

Bagley, R. L., and Torvik, P. J., 1983, “A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity,” J. Rheol., 27(3), pp. 201–210. [CrossRef]
Bagley, R. L., and Torvik, P. J., 1983, “Fractional Calculus a Different Approach to the Analysis of Viscoelastically Damped Structures,” AIAA J., 21(5), pp. 741–748. [CrossRef]
Bagley, R. L., and Torvik, P. J., 1985, “Fractional Calculus in the Transient Analysis of Viscoelastically Damped Structures,” AIAA J., 23(6), pp. 918–925. [CrossRef]
Magin, R. L., 2004, “Fractional Calculus in Bioengineering,” Critical Rev. Biomed. Eng., 32(1), pp. 1–104 [CrossRef].
Robinson, D. A., 1981, “The Use of Control Systems Analysis in Neurophysiology of Eye Movements,” Ann. Rev. Neurosci., 4, pp. 462–503. [CrossRef]
Podlubny, I., 1999, Fractional Differential Equations, Academic, San Diego, CA.
Kilbas, A. A., Srivastava, H. M., and Trujillo, J. J., 2006, Theory and Applications of Fractional Differential Equations: North-Holland Mathematics Studies, Elsevier, Amsterdam, Vol. 204.
Agrawal, O. P., 2010, “Generalized Variational Problems and Euler-Lagrange Equations,” Comput. Math. Appl., 59(5), pp. 1852–1864. [CrossRef]
Yousefi, S. A., Dehghan, M., and Lotfi, A., 2011, “Generalized Euler–Lagrange Equations for Fractional Variational Problems With Free Boundary Conditions,” Comput. Math. Appl., 62(3), pp. 987–995. [CrossRef]
Lotfi, A., and Yousefi, S. A., 2013, “A Numerical Technique for Solving a Class of Fractional Variational Problems,” J. Comput. Appl. Math., 237(1), pp. 633–643. [CrossRef]
Odzijewicz, T., Agnieszka, B. M., and Torres, D. F. M., 2012, “Fractional Calculus of Variations in Terms of a Generalized Fractional Integral With Applications to Physics,” Abstr. Appl. Anal., 2012, p. 871912. [CrossRef]
Odzijewicz, T., Malinowska, A. B., and Torres, D. F. M., 2012, “Generalized Fractional Calculus With Applications to the Calculus of Variations,” Comput. Math. Appl., 64(10), pp. 3351–3366. [CrossRef]
Odzijewicz, T., Malinowska, A. B., and Torres, D. F. M., 2013, “A Generalized Fractional Calculus of Variations,” Control Cybern., 42(2), pp. 443–458.
Agrawal, O. P., 2012, “Generalized Multiparameters Fractional Variational Calculus,” Int. J. Differ. Equations, 2012, p. 521750. [CrossRef]
Razminia, A., Baleanu, D., and Majd, V. J., 2012, “Conditional Optimization Problems: Fractional Order Case,” J. Optim. Theory Appl., 156(1), pp. 45–55. [CrossRef]
Agrawal, O. P., 2002, “Formulation of Euler-Lagrange Equations for Fractional Variational Problems,” J. Math. Anal. Appl., 272(1), pp. 368–379. [CrossRef]
Agrawal, O. P., 2006, “Fractional Variational Calculus and the Transversality Conditions,” J. Phys. A: Math. Gen., 39, pp. 10375–10384. [CrossRef]
Klimek, M., 2001, “Fractional Sequential Mechanics-Models With Symmetric Fractional Derivatives,” Czech. J. Phys., 51, pp. 1348–1354. [CrossRef]
Klimek, M., 2002, “Stationary Conservation Laws for Fractional Differential Equations With Variable Coefficients,” J. Phys. A: Math. Gen., 35(31), pp. 6675–6693. [CrossRef]
Odzijewicz, T., Malinowska, A. B., and Torres, D. F. M., 2012, “Fractional Variational Calculus With Classical and Combined Caputo Derivatives,” Nonlinear Anal.: Theory Methods Appl., 75(3), pp. 1507–1515. [CrossRef]
Almeida, R., Ferreira, R. A., and Torres, D. F. M., 2012, “Isoperimetric Problems of the Calculus of Variations With Fractional Derivatives,” Acta Math. Sci., 32(2), pp. 619–630. [CrossRef]
Almeida, R., Pooseh, S., and Torres, D. F. M., 2012, “Fractional Variational Problems Depending on Indefinite Integrals,” Nonlinear Anal., 75(3), pp. 1009–1025. [CrossRef]
Almeida, R., and Torres, D. F. M., 2011, “Necessary and Sufficient Conditions for the Fractional Calculus of Variations With Caputo Derivatives,” Commun. Nonlinear Sci. Numer. Simul., 16(3), pp. 1490–1500. [CrossRef]
Almeida, R., and Torres, D. F. M., 2011, “Fractional Variational Calculus for Nondifferentiable Functions,” Comput. Math. Appl., 61(10), pp. 3097–3104. [CrossRef]
Frederico, G. S. F., and Torres, D. F. M., 2013, “Fractional Isoperimetric Noether's Theorem in the Riemann-Liouville Sense,” Rep. Math. Phys., 71(3), pp. 291–304. [CrossRef]
Malinowska, A. B., and Torres, D. F. M., 2012, “Multiobjective Fractional Variational Calculus in Terms of a Combined Caputo Derivative,” Appl. Math. Comput., 218(9), pp. 5099–5111. [CrossRef]
Odzijewicz, T., and Torres, D. F. M., 2011, “Fractional Calculus of Variations for Double Integrals,” Balk. J. Geom. Appl., 16(2), pp. 102–113.
Agrawal, O. P., 2008, “A General Finite Element Formulation for Fractional Variational Problems,” J. Math. Anal. Appl., 337(1), pp. 1–12. [CrossRef]
Agrawal, O. P., 2010, “A Series Solution Technique for a Class of Fractional Differential Equations,” Third Conference on Mathematical Methods in Engineering International Symposium, Instituto Politecnico de Coimbra, Coimbra, Portugal, Oct. 21–24.
Klimek, M., 2008, “G-Meijer Functions Series as Solutions for Certain Fractional Variational Problem on a Finite Time Interval,” J. Eur. Syst. Autom., 42, pp. 653–664 [CrossRef].
Agrawal, O. P., Hasan, M. M., and Tangpong, X. W., 2012, “A Numerical Scheme for a Class of Parametric Problem of Fractional Variational Calculus,” ASME J. Comput. Nonlinear Dyn., 7, p. 021005. [CrossRef]
Klimek, M., Odzijewicz, T., and Malinowska, A. B., 2014, “Variational Method for the Fractional Strum–Liouville Problem,” J. Math. Anal. Appl., 416, pp. 402–426. [CrossRef]
Pooseh, S., Almeida, R., and Torres, D. F. M., 2013, “A Discrete Time Method to the First Variation of Fractional Order Variational Functionals,” Cent. Eur. J. Phys., 11(10), pp. 1262–1267. [CrossRef]
Baleanu, D., Diethelm, K., Scalas, E., and Trujillo, J. J., 2012, Fractional Calculus Models and Numerical Methods (Series on Complexity, Nonlinearity and Chaos), World Scientific, London, UK [CrossRef].
Garloff, J., 2000, “Application of Bernstein Expansion to the Solution of Control Problems,” Reliab. Comput., 6(3), pp. 303–320. [CrossRef]
Singh, O. P., Singh, V. K., and Pandey, R. K., 2010, “A Stable Numerical Inversion of Abel's Integral Equations Using Almost Bernstein Operational Matrix,” J. Quant. Spectrosc. Radiat. Transfer, 111(1), pp. 245–252. [CrossRef]
Pandey, R. K., and Mandal, B. N., 2010, “Numerical Solution of a System of Generalized Abel Integral Equations Using Bernstein Polynomials,” J. Adv. Res. Sci. Comput., 2(2), pp. 44–53.
Pandey, R. K., and Kumar, N., 2012, “Solution of Lane–Emden Type Equations Using Bernstein Operational Matrix of Differentiation,” New Astron., 17(3), pp. 303–308. [CrossRef]
Alipour, M., and Baleanu, D., 2013, “Approximate Analytical Solution for Nonlinear System of Fractional Differential Equations by BPs Operational Matrices,” Adv. Math. Phys., 2013, p. 954015. [CrossRef]
Magin, R. L., Abdullah, O., Baleanu, D., and Zhou, X. J., 2008, “Anomalous Diffusion Expressed Through Fractional Order Differential Operators in the Bloch Torrey Equation,” J. Magn. Reson., 190(2), pp. 255–270. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Exact solution Y(t) for integer order problem and other solutions for different α for a = 0

Grahic Jump Location
Fig. 2

Approximate solution for α = 0.8 at different values of a

Grahic Jump Location
Fig. 3

Approximate solution for α = 0.8 at different no. of polynomials for a = 0.001

Grahic Jump Location
Fig. 4

Analytical solution Y(t) for α = 1 and other approximate solutions for a = 1/2, at different values of α

Grahic Jump Location
Fig. 5

Integer order analytical solution Y(t) for α = 1 and approximate solutions for α = 0.8 at different values of a

Grahic Jump Location
Fig. 6

Approximate solution for order α = 0.8 problem at different no. of polynomials for a = 0.001

Grahic Jump Location
Fig. 7

Integer order analytical solution Y(t) for α = 1 and approximate solutions at different α

Grahic Jump Location
Fig. 8

Integer order analytical solution Y(t) for α = 1 and approximate solutions at different α

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In