Ascher,
U. M.
,
Chin,
H.
,
Petzold,
L. R.
, and
Reich,
S.
, 1995, “
Stabilization of Constrained Mechanical Systems With DAEs and Invariant Manifolds,” Mech. Struct. Mach.,
23(2), pp. 125–157.

[CrossRef]
Ascher,
U. M.
, and
Petzold,
L. R.
, 1993, “
Stability of Computational Methods for Constrained Dynamics Systems,” SIAM J. Sci., Stat. Comput.,
14(1), pp. 95–120.

[CrossRef]
Brenan,
K. E.
,
Campbell,
S. L. V.
, and
Petzold,
L. R.
, 1989, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations,
Society for Industrial and Applied Mathematics,
North-Holland/New York.

Hairer,
E.
,
Norsett,
S. P.
, and
Wanner,
G.
, 2009, Solving Ordinary Differential Equations I: Nonstiff Problems, 3rd ed.,
Springer,
Berlin.

Hairer,
E.
, and
Wanner,
G.
, 2010, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd ed.,
Springer,
Berlin.

Petzold,
L. R.
, 1982, “
Differential-Algebraic Equations are Not ODE's,” SIAM J. Sci., Stat. Comput.,
3(3), pp. 367–384.

[CrossRef]
Baumgarte,
J. W.
, 1972, “
Stabilization of Constraints and Integrals of Motion in Dynamic Systems,” Comput. Methods Appl. Mech. Eng.,
1(1), pp. 1–16.

[CrossRef]
Eich,
E.
, 1993, “
Convergence Results for a Coordinate Projection Method Applied to Mechanical Systems With Algebraic Constraints,” SIAM J. Numer. Anal.,
30(5), pp. 1467–1482.

[CrossRef]
Eich-Soellner,
E.
, and
Führer,
C.
, 1998, Numerical Methods in Multibody Dynamics,
B. G. Teubner, Stuttgart.

Lubich,
C.
, 1991, “
Extrapolation Integrators for Constrained Multibody Systems,” Impact Comput. Sci. Eng.,
3(3), pp. 213–234.

[CrossRef]
Gear,
C. W.
,
Gupta,
G. K.
, and
Leimkuhler,
B. J.
, 1985, “
Automatic Integration of the Euler–Lagrange Equations With Constraints,” J. Comp. Appl. Math.,
12–13, pp. 77–90.

[CrossRef]
Garcia de Jalon,
J.
, and
Bayo,
E.
, Kinematic and Dynamic Simulation of Multibody Systems. The Real-Time Challenge,
Springer,
New York.

Bayo,
E.
,
Garcia de Jalon,
J.
, and
Serna,
M. A.
, 1988, “
A Modified Lagrangian Formulation for the Dynamic Analysis of Constrained Mechanical Systems,” Comput. Methods Appl. Mech. Eng.,
71(2), pp. 183–195.

[CrossRef]
Haug,
E. J.
, and
Yen,
J.
, 1992, “
Implicit Numerical Integration of Constrained Equations of Motion Via Generalized Coordinate Partitioning,” ASME J. Mech. Des.,
114(2), pp. 296–304.

[CrossRef]
Kim,
S. S.
, and
Vanderploeg,
M. J.
, 1986, “
QR Decomposition for State Space Representation of Constrained Mechanical Dynamic Systems,” J. Mech. Trans.,
108(2), pp. 183–188.

[CrossRef]
Mani,
N. K.
,
Haug,
E. J.
, and
Atkinson,
K. E.
, 1985, “
Application of Singular Value Decomposition for Analysis of Mechanical System Dynamics,” J. Mech. Trans. Auto. Des.,
107(1), pp. 82–87.

[CrossRef]
Wehage,
R. A.
, and
Haug,
E. J.
, 1982, “
Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Systems,” ASME J. Mech. Des.,
104(1), pp. 247–255.

[CrossRef]
Führer,
C.
, and
Leimkuhler,
B. J.
, 1991, “
Numerical Solution of DAEs for Constrained Mechanical Motion,” Numer. Math.,
59, pp. 5–69.

[CrossRef]
Mattsson,
S. E.
, and
Söderlind,
G.
, 1993, “
Index Reduction in Differential-Algebraic Equations Using Dummy Derivatives,” SIAM J. Sci. Comput.,
14(3), pp. 677–692.

[CrossRef]
Kunkel,
P.
, and
Mehrmann,
V.
, 2004, “
Index Reduction for Differential-Algebraic Equations by Minimal Extension,” ZAMM—J. Appl. Math. Mech.,
84(9), pp. 579–597.

[CrossRef]
Simeon,
B.
, 2013, Computational Flexible Multibody Dynamics: A Differential-Algebraic Approach,
Springer,
Berlin.

Masarati,
P.
, 2011, “
Constraint Stabilization of Mechanical Systems in ODE Form,” Proc. Inst. Mech. Eng. Part K,
225(1), pp. 12–33.

[CrossRef]
Masarati,
P.
, 2011, “
Adding Kinematic Constraints to Purely Differential Dynamics,” Comput. Mech.,
47(2), pp. 187–203.

[CrossRef]
Braun,
D. J.
, and
Goldfarb,
M.
, 2009, “
Eliminating Constraint Drift in the Numerical Simulation of Constrained Dynamical Systems,” Comput. Methods Appl. Mech. Eng.,
198(37–40), pp. 3151–3160.

[CrossRef]
Borri,
M.
,
Trainelli,
L.
, and
Croce,
A.
, 2006, “
The Embedded Projection Method: A General Index Reduction Procedure for Constrained System Dynamics,” Comput. Methods Appl. Mech. Eng.,
195(50–51), pp. 6974–6992.

[CrossRef]
Arnold,
M.
, 2009, “
Numerical Methods for Simulation in Applied Dynamics,” In Simulation Techniques for Applied Dynamics,
M. Arnold
and
W. Schiehlen
, eds.,
Springer,
Vienna.

Bauchau,
O. A.
, and
Laulusa,
A.
, 2008, “
Review of Contemporary Approaches for Constraint Enforcement in Multibody Systems,” ASME J. Comput. Nonlinear Dyn.,
3(1), p. 011005.

[CrossRef]
Laulusa,
A.
, and
Bauchau,
O. A.
, 2008, “
Review of Classical Approaches for Constraint Enforcement in Multibody Systems,” ASME J. Comput. Nonlinear Dyn.,
3(1), p. 011004.

[CrossRef]
Schiehlen,
W.
, 1991, “
Multibody System Dynamics: Roots and Perspectives,” Multibody Syst. Dyn.,
1, pp. 149–188.

[CrossRef]
Bauchau,
O. A.
, 2011, Flexible Multibody Dynamics,
Springer,
Dordrecht.

Hairer,
E.
,
Lubich,
Ch.
, and
Roche,
M.
, 1989, “
The Numerical Solution of Differential-Algebraic Equations by Runge–Kutta Methods,” Lecture Notes in Mathematics, Vol.
1409,
Springer.

Kunkel,
P.
, and
Mehrmann,
V.
, 2006, Differential-Algebraic Equations: Analysis and Numerical Solution,
European Mathematical Society,
Zürich.

Betsch,
P.
, and
Steinmann,
P.
, 2002, “
A DAE Approach to Flexible Multibody Dynamics,” Multibody Syst. Dyn.,
8, pp. 367–391.

[CrossRef]
Negrut,
D.
,
Jay,
L. O.
,
Khude,
N.
, and
Heyn,
T.
, 2007, “
A Discussion of Low Order Numerical Integration Formulas for Rigid and Flexible Multibody Dynamics,” Proceedings of Multibody Dynamics, ECCOMAS Thematic Conference,
C. L. Bottasso
,
P. Masarati
, and
L. Trainelli
, eds., Milano, Italy, June 25–28.

Shabana,
A. A.
, 1997, “
Flexible Multibody Dynamics: Review of Past and Recent Developments,” Multibody Syst. Dyn.,
1(2), pp. 189–222.

[CrossRef]
Shabana,
A. A.
, 2005, Dynamics of Multibody Systems,
Cambridge University Press,
New York.

Shabana,
A. A.
,
Hwang,
Y. L.
, and
Wehage,
R. A.
, 1992, “
Projection Methods in Flexible Multibody Dynamics. Part I: Kinematics,” Int. J. Numer. Methods Eng.,
35(10), pp. 1927–1939.

[CrossRef]
Simeon,
B.
, 1998, “
Order Reduction of Stiff Solvers at Elastic Multibody Systems,” Appl. Numer. Math.,
28(2–4), pp. 459–475.

[CrossRef]
Simeon,
B.
, 2001, “
Numerical Analysis of Flexible Multibody Systems,” Multibody Syst. Dyn.,
6(4), pp. 305–325.

[CrossRef]
Sugiyama,
H.
,
Escalona,
J. L.
, and
Shabana,
A. A.
, 2003, “
Formulation of Three-Dimensional Joint Constraints Using the Absolute Nodal Coordinates,” Nonlinear Dyn.,
31(2), pp. 167–195.

[CrossRef]
Wehage,
R. A.
,
Shabana,
A. A.
, and
Hwang,
Y. L.
, 1992, “
Projection Methods in Flexible Multibody Dynamics. Part II: Dynamics and Recursive Projection Methods,” Int. J. Numer. Methods Eng.,
35(10), pp. 1941–1966.

[CrossRef]
Yen,
J.
, and
Petzold,
L. R.
, 1998, “
A Time Integration Algorithm for Flexible Mechanism Dynamics: The DAE α-Method,” Comput. Methods Appl. Mech. Eng.,
158(3–4), pp. 341–355.

[CrossRef]
Bastos,
G.
,
Seifried,
R.
, and
Brüls,
O.
, 2013, “
Inverse Dynamics of Serial and Parallel Underactuated Multibody Systems Using a DAE Optimal Control Approach,” Multibody Syst. Dyn.,
30(3), pp. 359–376.

[CrossRef]
Brüls,
O.
,
Bastos,
G., Jr.
, and
Seifried,
R.
, 2014, “
A Stable Inversion Method for Feedforward Control of Constrained Flexible Multibody Systems,” ASME J. Comput. Nonlinear Dyn.,
9(1), p. 011014.

Fumagalli,
A.
,
Masarati,
P.
,
Morandini,
M.
, and
Mantegazza,
P.
, 2009, “
Control Constraint Realization for Multibody Systems,” ASME Paper No. DETC2009-86949.

Masarati,
P.
, 2014, “
Computed Torque Control of Redundant Manipulators Using General-Purpose Software in Real-Time,” Multibody Syst. Dyn.,
32(4), pp. 403–428.

[CrossRef]
Masarati,
P.
,
Morandini,
M.
, and
Fumagalli,
A.
, 2014, “
Control Constraint of Underactuated Aerospace Systems,” ASME J. Comput. Nonlinear Dyn.,
9(2), p. 021014.

[CrossRef]
Masarati,
P.
,
Morandini,
M.
, and
Fumagalli,
A.
, 2011, “
Control Constraint Realization Applied to Underactuated Aerospace Systems,” ASME Paper No. DETC2011-47276.

Seifried,
R.
, and
Blajer,
W.
, 2013, “
Analysis of Servo-Constraint Problems for Underactuated Multibody Systems,” Mech. Sci.,
4, pp. 113–129.

[CrossRef]
Gu,
B.
, and
Asada,
H. H.
, 2004,“
Co-Simulation of Algebraically Coupled Dynamic Subsystems Without Disclosure of Proprietary Subsystem Models,” ASME J. Dyn. Syst., Meas. Control,
126(1), pp. 1–13.

[CrossRef]
Kübler,
R.
, and
Schiehlen,
W.
, 2000, “
Two Methods of Simulator Coupling,” Math. Comput. Modell. Dyn. Syst.,
6(2), pp. 93–113.

[CrossRef]
Schweizer,
B.
, and
Lu,
D.
, 2014, “
Predictor/Corrector Co-Simulation Approaches for Solver Coupling With Algebraic Constraints,” ZAMM—J. Appl. Math. Mech. (online).

Schweizer,
B.
, and
Lu,
D.
, 2014, “
Stabilized Index-2 Co-Simulation Approach for Solver Coupling With Algebraic Constraints,” Multibody Syst. Dyn.
34, pp. 129–161.

Schweizer,
B.
,
Li,
P.
, and
Lu,
D.
, 2015, “
Implicit Co-Simulation Methods: Stability and Convergence Analysis for Solver Coupling With Algebraic Constraints,” ZAMM—J. Appl. Math. Mech. (online).

Schweizer,
B.
,
Lu,
D.
, and
Li,
P.
, 2015, “
Co-Simulation Method for Solver Coupling With Algebraic Constraints Incorporating Relaxation Techniques,” Multibody Syst. Dyn. (online).

Schweizer,
B.
,
Li,
P.
,
Lu,
D.
, and
Meyer,
T.
, 2015, “
Stabilized Implicit Co-Simulation Method: Solver Coupling With Algebraic Constraints for Multibody Systems,” ASME J. Comput. Nonlinear Dyn. (accepted).

Wang,
J.
,
Ma,
Z. D.
, and
Hulbert,
G.
, 2003, “
A Gluing Algorithm for Distributed Simulation of Multibody Systems,” Nonlinear Dyn.,
34(1–2), pp. 159–188.

[CrossRef]
Masarati,
P.
, 2009, “
Direct Eigenanalysis of Constrained System Dynamics,” Proc. Inst. Mech. Eng. Part K,
223(4), pp. 335–342.

Sohoni,
V. N.
, and
Whitesell,
J.
, 1986, “
Automatic Linearization of Constraint Dynamical Models,” ASME J. Mech. Des.,
108(3), pp. 300–304.

Brüls,
O.
,
Cardona,
A.
, and
Arnold,
M.
, 2012, “
Lie Group Generalized-α Time Integration of Constrained Flexible Multibody Systems,” Mech. Mach. Theory,
48, pp. 121–137.

[CrossRef]
Brüls,
O.
, and
Arnold,
M.
, 2008, “
The Generalized-α Scheme as a Linear Multi-Step Integrator: Towards a General Mechatronic Simulator,” ASME J. Comput. Nonlinear Dyn.,
3, pp. 41–57.

[CrossRef]
Cardona,
A.
, and
Geradin,
M.
, 1998, “
Time Integration of the Equations of Motion in Mechanism Analysis,” Comput. Struct.,
33, pp. 801–820.

[CrossRef]
Chung,
J.
, and
Hulbert,
G. M.
, 1993, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method,” ASME J. Appl. Mech.,
60(2), pp. 371–375.

[CrossRef]
Negrut,
D.
,
Rampalli,
R.
, and
Ottarsson,
G.
, 2007, “
On an Implementation of the HHT Method in the Context of Index 3 Differential Algebraic Equations of Multibody Dynamics,” ASME J. Comput. Nonlinear Dyn.,
2(1), pp. 73–85.

[CrossRef]
Betsch,
P.
, 2005, “
The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems. Part I—Holonomic Constraints,” Comput. Methods Appl. Mech. Eng.,
194(50–52), pp. 5159–5190.

[CrossRef]
Betsch,
P.
, and
Leyendecker,
S.
, 2006, “
The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems. Part II—Multibody Dynamics,” Int. J. Numer. Methods Eng.,
67(4), pp. 499–552.

[CrossRef]
Betsch,
P.
,
Hesch,
C.
,
Sänger,
N.
, and
Uhlar,
S.
, 2010, “
Variational Integrators and Energy-Momentum Schemes for Flexible Multibody Dynamics,” ASME J. Comput. Nonlinear Dyn.,
5(3), p. 031001.

[CrossRef]
Betsch,
P.
, and
Uhlar,
S.
, 2007, “
Energy-Momentum Conserving Integration of Multibody Dynamics,” Multibody Syst. Dyn.,
17(4), pp. 243–289.

[CrossRef]
Leyendecker,
S.
,
Betsch,
P.
, and
Steinmann,
P.
, 2008, “
The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems. Part III—Flexible Multibody Dynamics,” Multibody Syst. Dyn.,
19(1–2), pp. 45–72.

[CrossRef]
Leyendecker,
S.
,
Betsch,
P.
, and
Steinmann,
P.
, 2006, “
Objective Energy-Momentum Conserving Integration for the Constrained Dynamics of Geometrically Exact Beams,” Comput. Methods Appl. Mech. Eng.,
195(19–22), pp. 2313–2333.

[CrossRef]
Leyendecker,
S.
,
Betsch,
P.
, and
Steinmann,
P.
, 2004, “
Energy-Conserving Integration of Constrained Hamiltonian Systems—A Comparison of Approaches,” Comput. Mech.,
33(3), pp. 174–185.

[CrossRef]
Lubich,
C.
, 1993, “
Integration of Stiff Mechanical Systems by Runge–Kutta Methods,” ZAMP,
44(6), pp. 1022–1053.

[CrossRef]
Petzold,
L. R.
, 1986, “
Order Results for Implicit Runge–Kutta Methods Applied to Differential Algebraic Systems,” SIAM J. Numer. Anal.,
23(4), pp. 837–852.

[CrossRef]
Schaub,
M.
, and
Simeon,
B.
, 2003, “
Blended Lobatto Methods in Multibody Dynamics,” ZAMM J. Appl. Math. Mech.,
83(10), pp. 720–728.

[CrossRef]
Negrut,
D.
,
Haug,
E. J.
, and
German,
H. C.
, 2003, “
An Implicit Runge–Kutta Method for Integration of Differential Algebraic Equations of Multibody Dynamics,” Multibody Syst. Dyn.,
9(2), pp. 121–142.

[CrossRef]
Negrut,
D.
, 1998, “
On the Implicit Integration of Differential-Algebraic Equations of Multibody Dynamics,” Ph.D. thesis, The University of Iowa, Iowa city, IA.

Meijaard,
J.
, 2003, “
Application of Runge–Kutta–Rosenbrock Methods to the Analysis of Flexible Multibody Systems,” Multibody Syst. Dyn. J.,
10(3), pp. 263–288.

[CrossRef]
Orzechowski,
G.
, and
Fraczek,
J.
, 2012, “
Integration of the Equations of Motion of Multibody Systems Using Absolute Nodal Coordinate Formulation,” Acta Mech. Et Autom.,
6(2), pp. 75–83.

Bauchau,
O. A.
, 2003, “
A Self-Stabilized Algorithm for Enforcing Constraints in Multibody Systems,” Int. J. Solids Struct.,
40(13–14), pp. 3253–3271.

[CrossRef]
Haug,
E. J.
, 1989,
*Computer-Aided Kinematics and Dynamics of Mechanical Systems*,
Allyn and Bacon,
Boston.

Gear,
C. W.
, 1988, “
Differential-Algebraic Index Transformations,” SIAM J. Sci. Stat. Comput.,
9(1), pp. 39–47.

[CrossRef]