Research Papers

Fuzzy Generalized Predictive Control for Nonlinear Brushless Direct Current Motor

[+] Author and Article Information
Bin Wang, Ke Shi, Cheng Zhang

Department of Electrical Engineering,
Northwest A&F University,
Yangling 712100, China

Delan Zhu

Department of Electrical Engineering,
Northwest A&F University,
Yangling 712100, China
e-mail: dlzhu222@126.com

1Corresponding author.

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received May 13, 2015; final manuscript received October 16, 2015; published online November 13, 2015. Assoc. Editor: Hiroshi Yabuno.

J. Comput. Nonlinear Dynam 11(4), 041004 (Nov 13, 2015) (7 pages) Paper No: CND-15-1129; doi: 10.1115/1.4031839 History: Received May 13, 2015; Revised October 16, 2015

In the study, a novel fuzzy generalized predictive control (GPC) scheme is proposed for the stability control of nonlinear brushless DC motor (BLDCM). First, the fuzzy predictive model of BLDCM is presented via Takagi–Sugeno fuzzy model. Then, based on the controlled autoregressive moving average (CARMA) model transformed by Takagi–Sugeno fuzzy model of BLDCM, a new fuzzy GPC scheme for the nonlinear BLDCM is designed by combining fuzzy techniques and GPC theory, and the rigorous mathematical derivation is given. Finally, numerical simulations are implemented to verify the effectiveness and superiority of the proposed scheme. It also provides reference for other nonlinear even chaos control in actual project.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Wei, D. Q. , Luo, X. S. , and Zhang, B. , 2012, “ Synchronization of Brushless DC Motors Based on LaSalle Invariance Principle,” Nonlinear Dyn., 69(4), pp. 1733–1738. [CrossRef]
Maetani, T. , Isomura, Y. , Watanabe, A. , Iimori, K. , and Morimoto, S. , 2013, “ Suppressing Bearing Voltage in an Inverter-Fed Ungrounded Brushless DC Motor,” IEEE Trans. Ind. Electron., 60(11), pp. 4861–4868. [CrossRef]
Lee, D. H. , and Ahn, J. W. , 2009, “ A Current Ripple Reduction of a High-Speed Miniature Brushless Direct Current Motor Using Instantaneous Voltage Control,” IET Electr. Power Appl., 3(2), pp. 85–92. [CrossRef]
Chen, C. F. , and Cheng, M. Y. , 2007, “ Implementation of a Highly Reliable Hybrid Electric Scooter Drive,” IEEE Trans. Ind. Electron., 54(5), pp. 2462–2473. [CrossRef]
Park, J. D. , Kalev, C. , and Hofmann, H. F. , 2008, “ Control of High-Speed Solid-Rotor Synchronous Reluctance Motor/Generator for Flywheel-Based Uninterruptible Power Supplies,” IEEE Trans. Ind. Electron., 55(8), pp. 3038–3046. [CrossRef]
Hemati, N. , and Leu, M. C. , 1992, “ A Complete Model Characterization of Brushless DC Motors,” IEEE Trans. Ind. Appl., 28(1), pp. 172–180. [CrossRef]
Hemati, N. , 1994, “ Strange Attractors in Brushless DC Motor,” IEEE Trans. Circuits Syst., I: Fundam. Theory Appl., 41(1), pp. 40–45. [CrossRef]
Chen, J. H. , Chau, K. T. , and Chan, C. C. , 2000, “ Analysis of Chaos in Current-Mode-Controlled DC Drive Systems,” IEEE Trans. Ind. Electron., 47(1), pp. 67–76. [CrossRef]
Ott, E. , Grebogi, C. , and York, J. A. , 1990, “ Controlling Chaos,” Phys. Rev. Lett., 64(11), pp. 1196–1199. [CrossRef] [PubMed]
Aghababa, M. , 2013, “ Design of a Chatter-Free Terminal Sliding Mode Controller for Nonlinear Fractional-Order Dynamical Systems,” Int. J. Control, 86(10), pp. 1744–1756. [CrossRef]
Pan, H. H. , Sun, W. C. , Gao, H. J. , Kaynak, O. , Alsaadi, F. , and Hayat, T. , 2015, “ Robust Adaptive Control of Non-Linear Time-Delay Systems With Saturation Constraints,” IET Control Theory Appl., 9(1), pp. 103–113. [CrossRef]
Zhang, R. X. , and Yang, S. P. , 2013, “ Robust Synchronization of Two DifferentFractional-Order Chaotic Systems With Unknown Parameters Using Adaptive Sliding Mode Approach,” Nonlinear Dyn., 71(1–2), pp. 269–278. [CrossRef]
Ge, Z. M. , Chang, C. M. , and Chen, Y. S. , 2006, “ Anti-Control of Chaos of Single Time Scale Brushless dc Motors and Chaos Synchronization of Different Order System,” Chaos, Solitons Fractals, 27(5), pp. 1298–1315. [CrossRef]
Wei, D. Q. , Wan, L. , Luo, X. S. , Zeng, S. Y. , and Zhang, B. , 2014, “ Global Exponential Stabilization for Chaotic Brushless DC Motors With a Single Input,” Nonlinear Dyn., 77(1–2), pp. 209–212. [CrossRef]
Richalet, J. , Rault, A. , Testud, J. L. , and Papon, J. , 1978, “ Model Predictive Heuristic Control: Applications to Industrial Processes,” Automatica, 14(5), pp. 413–428. [CrossRef]
Rhouma, A. , Bouani, F. , Bouzouita, B. , and Ksouri, M. , 2014, “ Model Predictive Control of Fractional Order Systems,” ASME J. Comput. Nonlinear Dyn., 9(3), p. 031011. [CrossRef]
Korda, M. , Gondhalekar, R. , Oldewurtel, F. , and Jones, C. N. , 2014, “ Stochastic MPC Framework for Controlling the Average Constraint Violation,” IEEE Trans. Autom. Control, 59(7), pp. 1706–1721. [CrossRef]
Prior, G. , and Krstic, M. , 2015, “ A Control Lyapunov Approach to Finite Control Set Model Predictive Control for Permanent Magnet Synchronous Motors,” ASME J. Dyn. Syst., Meas., Control, 137(1), p. 011001. [CrossRef]
Alkorta, P. , Barambones, O. , Cortajarena, J. A. , and Zubizarrreta, A. , 2014, “ Efficient Multivariable Generalized Predictive Control for Sensorless Induction Motor Drives,” IEEE Trans. Ind. Electron., 61(9), pp. 5126–5134. [CrossRef]
Sarhadi, P. , Salahshoor, K. , and Khaki-Sedigh, A. , 2012, “ Robustness Analysis and Tuning of Generalized Predictive Control Using Frequency Domain Approaches,” Appl. Math. Modell., 36(12), pp. 6167–6185. [CrossRef]
Faudzi, A. A. M. , Mustafa, N. D. , and Osman, K. , 2014, “ Force Control for a Pneumatic Cylinder Using Generalized Predictive Controller Approach,” Math. Probl. Eng., 2014, p. 261829.
Wang, Y. , Chai, T. , Fu, J. , Zhang, Y. , and Fu, Y. , 2012, “ Adaptive Decoupling Switching Control Based on Generalised Predictive Control,” IET Control Theory Appl., 6(12), pp. 1828–1841. [CrossRef]
Gao, Q. , Liu, L. , Feng, G. , Wang, Y. , and Qiu, J. B. , 2014, “ Universal Fuzzy Integral Sliding-Mode Controllers Based on T-S Fuzzy Models,” IEEE Trans. Fuzzy Syst., 22(2), pp. 350–362. [CrossRef]
Chen, D. Y. , Zhao, W. L. , Sprott, J. C. , and Ma, X. Y. , 2013, “ Application of Takagi-Sugeno Fuzzy Model to a Class of Chaotic Synchronization and Anti-Synchronization,” Nonlinear Dyn., 73(3), pp. 1495–1505. [CrossRef]
Defoy, B. , Alban, T. , and Mahfoud, J. , 2014, “ Assessment of the Effectiveness of a Polar Fuzzy Approach for the Control of Centrifugal Compressors,” ASME J. Dyn. Syst., Meas., Control, 136(4), p. 041004. [CrossRef]
Zhang, G. , Li, J. M. , and Ge, Y. W. , 2014, “ Nonfragile Guaranteed Cost Control of Discrete-Time Fuzzy Bilinear System With Time-Delay,” ASME J. Dyn. Syst., Meas., Control, 136(4), p. 044502. [CrossRef]
Wang, B. , Xue, J. Y. , He, H. Y. , and Zhu, D. L. , 2014, “ Analysis on a Class of Double-Wing Chaotic System and Its Control Via Linear Matrix Inequality,” Acta Phys. Sin., 63(21), p. 210502.
Su, X. J. , Shi, P. , Wu, L. G. , and Song, Y. D. , 2013, “ A Novel Control Design on Discrete-Time Takagi-Sugeno Fuzzy Systems With Time-Varying Delays,” IEEE Trans. Fuzzy Syst., 21(4), pp. 655–671. [CrossRef]
Wang, B. , Xue, J. Y. , and Chen, D. Y. , 2014, “ Takagi-Sugeno Fuzzy Control for a Wide Class of Fractional-Order Chaotic Systems With Uncertain Parameters Via Linear Matrix Inequality,” J. Vib. Control (published online).
Wang, B. , Zhang, J. W. , Zhu, D. L. , and Chen, D. Y. , 2015, “ Takagi-Sugeno Fuzzy Predictive Control for a Class of Nonlinear System With Constrains and Disturbances,” ASME J. Comput. Nonlinear Dyn., 10(5), p. 054505. [CrossRef]
Terki, A. , Moussi, A. , Betka, A. , and Terki, N. , 2012, “ An Improved Efficiency of Fuzzy Logic Control of PMBLDC for PV Pumping System,” Appl. Math. Modell., 36(3), pp. 934–944. [CrossRef]
Premkumar, K. , and Manikandan, B. V. , 2014, “ Adaptive Neuro-Fuzzy Inference System Based Speed Controller for Brushless DC Motor,” Neurocomputing, 138, pp. 260–270. [CrossRef]
Premkumar, K. , and Manikandan, B. V. , 2015, “ Fuzzy PID Supervised Online ANFIS Based Speed Controller for Brushless DC Motor,” Neurocomputing, 157, pp. 76–90. [CrossRef]


Grahic Jump Location
Fig. 1

Phase trajectory and time domain of BLDCM (1): (a) x1−x2−x3, (b) x1−t, (c) x2−t, and (d) x3−t

Grahic Jump Location
Fig. 2

Triangle membership function

Grahic Jump Location
Fig. 3

The block-diagram of GPC

Grahic Jump Location
Fig. 4

State trajectories of the controlled BLDCM (19): (a) x1−t, (b) x2−t, and (c) x3−t

Grahic Jump Location
Fig. 5

Time domain of the controller applied in BLDCM (19): (a) u1−t, (b) u2−t, and (c) u3−t

Grahic Jump Location
Fig. 6

Time domain of BLDCM (19) with controller (5) in Ref. [27]: (a) x1−t ; (b) x2−t ; and (c) x3−t




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In