0
Research Papers

An Efficient Dynamic Formulation for Solving Rigid and Flexible Multibody Systems Based on Semirecursive Method and Implicit Integration

[+] Author and Article Information
Francisco Javier Funes

Captación Fibra DT Centro,
Telefónica de España,
Padre Isla 24,
León 24010, Spain
e-mail: franciscojavier;funesmartinez@telefonica.com

Javier García de Jalón

Mem. ASME
Escuela Técnica Superior de Ingenieros Industriales and INSIA,
Universidad Politécnica de Madrid,
José Gutiérrez Abascal 2,
Madrid 28006, Spain
e-mail: jgjalon@etsii.upm.es

1Corresponding author.

Manuscript received February 12, 2015; final manuscript received December 1, 2015; published online February 3, 2016. Assoc. Editor: Jozsef Kovecses.

J. Comput. Nonlinear Dynam 11(5), 051001 (Feb 03, 2016) (9 pages) Paper No: CND-15-1045; doi: 10.1115/1.4032246 History: Received February 12, 2015; Revised December 01, 2015

This paper presents a method for solving the dynamic equations of multibody systems containing both rigid and flexible bodies. The proposed method uses independent coordinates and projects the dynamic equations on the constraint tangent manifold by means of a velocity transformation matrix. It can be used with a wide variety of integration formulae, considering both fixed and variable stepsizes. Topological semirecursive methods are used to take advantage of the relatively small number of parameters needed. An in depth implementation analysis is performed in order to evaluate the terms involved in the integration process. Numerical and stability issues are also discussed.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Figures

Grahic Jump Location
Fig. 1

Treelike structure of a multibody system

Grahic Jump Location
Fig. 2

2010 UPM Formula Student car and chassis FEM model

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In