0
Research Papers

An Extended Predictor–Corrector Algorithm for Variable-Order Fractional Delay Differential Equations

[+] Author and Article Information
B. Parsa Moghaddam

Department of Mathematics,
Lahijan Branch,
Islamic Azad University,
Lahijan 1616, Iran
e-mail: parsa.math@gmail.com

Sh. Yaghoobi

Department of Mathematics,
Lahijan Branch,
Islamic Azad University,
Lahijan 1616, Iran
e-mail: sholeyaghoobi1352@yahoo.com

J. A. Tenreiro Machado

Department of Electrical Engineering,
Institute of Engineering,
Rua Dr. Antonio Bernardino de Almeida, 431,
Porto 4249-015, Portugal
e-mail: jtm@isep.ipp.pt

1Corresponding author.

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received September 3, 2015; final manuscript received January 20, 2016; published online June 20, 2016. Assoc. Editor: Hiroshi Yabuno.

J. Comput. Nonlinear Dynam 11(6), 061001 (Jun 20, 2016) (7 pages) Paper No: CND-15-1270; doi: 10.1115/1.4032574 History: Received September 03, 2015; Revised January 20, 2016

This article presents a numerical method based on the Adams–Bashforth–Moulton scheme to solve variable-order fractional delay differential equations (VFDDEs). In these equations, the variable-order (VO) fractional derivatives are described in the Caputo sense. The existence and uniqueness of the solutions are proved under Lipschitz condition. Numerical examples are presented showing the applicability and efficiency of the novel method.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Tenreiro Machado, J. A. , 2012, “ The Effect of Fractional Order in Variable Structure Control,” Comput. Math. Appl., 64(10), pp. 3340–3350. [CrossRef]
Gutiérrez, R. E. , Rosário, J. M. , and Tenreiro Machado, J. A. , 2010, “ Fractional Order Calculus: Basic Concepts and Engineering Applications,” Math. Probl. Eng., 2010, p. 375858. [CrossRef]
Pinto, C. M. A. , and Tenreiro Machado, J. A. , 2011, “ Complex Order van der Pol Oscillator,” Nonlinear Dyn., 65(3), pp. 247–254. [CrossRef]
Bhrawy, A. H. , Baleanu, D. , Assas, L. M. , and Tenreiro Machado, J. A. , 2013, “ On a Generalized Laguerre Operational Matrix of Fractional Integration,” Math. Probl. Eng., 2013, p. 569286. [CrossRef]
Bhrawy, A. H. , Zaky, M. A. , and Tenreiro Machado, J. A. , 2015, “ Efficient Legendre Spectral Tau Algorithm for Solving the Two-Sided Space-Time Caputo Fractional Advection-Dispersion Equation,” J. Vib. Control, 22(8), pp. 2053–2068. [CrossRef]
Bhrawy, A. H. , Taha, T. M. , and Tenreiro Machado, J. A. , 2015, “ A Review of Operational Matrices and Spectral Techniques for Fractional Calculus,” Nonlinear Dyn., 81(3), pp. 1023–1052. [CrossRef]
Bhrawy, A. H. , Doha, E. H. , and Tenreiro Machado, J. A. , 2015, “ An Efficient Numerical Scheme for Solving Multi-Dimensional Fractional Optimal Control Problems With a Quadratic Performance Index,” Asian J. Control, 17(6), pp. 2389–2402. [CrossRef]
Moghaddam, B. P. , and Aghili, A. , 2012, “ A Numerical Method for Solving Linear Non-Homogenous Fractional Ordinary Differential Equation,” Appl. Math. Inf. Sc., 6(3), pp. 441–445.
Lazarevic, M. P. , and Debeljkovic, D. L. , 2008, “ Finite Time Stability Analysis of Linear Autonomous Fractional Order Systems With Delayed State,” Asian J. Control, 7(4), pp. 440–447. [CrossRef]
Zhen, W. , Xia, H. , and Guodong, S. , 2011, “ Analysis of Nonlinear Dynamics and Chaos in a Fractional Order Financial System With Time Delay,” Comput. Math. Appl., 62(3), pp. 1531–1539. [CrossRef]
Bhalekar, S. , Daftardar-Gejji, V. , Baleanu, D. , and Magin, R. , 2012, “ Generalized Fractional Order Bloch Equation With Extended Delay,” Int. J. Bifurcation Chaos, 22(4), pp. 1–15. [CrossRef]
Magin, R. L. , 2010, “ Fractional Calculus Models of Complex Dynamics in Biological Tissues,” Comput. Math. Appl., 59(5), pp. 1586–1593. [CrossRef]
Si-Ammour, A. , Djennoune, S. , and Bettayeb, M. , 2009, “ A Sliding Mode Control for Linear Fractional Systems With Input and State Delays,” Commun. Nonlinear Sci. Numer. Simul., 14(5), pp. 2310–2318. [CrossRef]
Sheng, H. , Chen, Y. Q. , and Qiu, T. , 2011, Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications, Springer, London, UK.
Coimbra, C. F. M. , 2003, “ Mechanics With Variable Order Differential Operators,” Ann. Phys. (Leipzig), 12(11–12), pp. 692–703. [CrossRef]
Sun, H. G. , Chen, W. , and Chen, Y. Q. , 2009, “ Variable-Order Fractional Differential Operators in Anomalous Diffusion Modeling,” Physica A, 388(21), pp. 4586–4592. [CrossRef]
Ingman, D. , and Suzdalnitsky, J. , 2005, “ Application of Differential Operator With Servo-Order Function in Model of Viscoelastic Deformation Process,” J. Eng. Mech., 131(7), pp. 763–767. [CrossRef]
Daftardar-Gejji, V. , Sukale, Y. , and Bhalekar, S. , 2015, “ Solving Fractional Delay Differential Equations: A New Approach,” Fractional Calculus Appl. Anal., 18(2), pp. 400–418.
Wang, Z. , 2011, “ A Numerical Method for Delayed Fractional-Order Differential Equations,” J. Appl. Math., 7, p. 256071.
Bhalekar, S. , and Daftardar-Gejji, V. , 2011, “ A Predictor–Corrector Scheme for Solving Non-Linear Delay Differential Equations of Fractional Order,” J. Fractional Calculus Appl., 1(5), pp. 1–9.
Moghaddam, B. P. , and Mostaghim, Z. S. , 2015, “ A Matrix Scheme Based on Fractional Finite Difference Method for Solving Fractional Delay Differential Equations With Boundary Conditions,” New Trends Math. Sci., 3(2), pp. 13–23.
Moghaddam, B. P. , and Mostaghim, Z. S. , 2013, “ Numerical Method Based on Finite Difference for Solving Fractional Delay Differential Equations,” J. Taibah Univ. Sci., 7(3), pp. 120–127. [CrossRef]
Moghaddam, B. P. , and Mostaghim, Z. S. , 2014, “ A Novel Matrix Approach to Fractional Finite Difference for Solving Models Based on Nonlinear Fractional Delay Differential Equations,” Ain Shams Eng. J., 5(2), pp. 585–594. [CrossRef]
Morgado, M. L. , Ford, N. J. , and Lima, P. M. , 2013, “ Analysis and Numerical Methods for Fractional Differential Equations With Delay,” J. Comput. Appl. Math., 252, pp. 159–168. [CrossRef]
Saeed, U. , and Rehman, M. U. , 2014, “ Hermite Wavelet Method for Fractional Delay Differential Equations,” J. Differ. Equation, 2014, pp. 1–8. [CrossRef]
Xu, Y. , and Suat Erturk, V. , 2014, “ A Finite Difference Technique for Solving Variable-Order Fractional Integro-Differential Equations,” Bull. Iran. Math. Soc., 40(3), pp. 699–712.
Bhrawy, A. H. , and Zaky, M. A. , 2015, “ Numerical Simulation for Two-Dimensional Variable-Order Fractional Nonlinear Cable Equation,” Nonlinear Dyn., 80(1), pp. 101–116. [CrossRef]
Valerio, D. , and da Costa, J. S. , 2011, “ Variable-Order Fractional Derivatives and Their Numerical Approximations,” Signal Process., 91(3), pp. 470–483. [CrossRef]
Zayernouri, M. , and Karniadakis, G. E. , 2014, “ Fractional Spectral Collocation Methods for Linear and Nonlinear Variable Order FPDEs,” J. Comput. Phys. A, 293, pp. 312–338. [CrossRef]
Zhao, X. , Sun, Z. Z. , and Karniadakis, G. E. , 2015, “ Second-Order Approximations for Variable Order Fractional Derivatives: Algorithms and Applications,” J. Comput. Phys., 293, pp. 312–338. [CrossRef]
Sierociuk, D. , Malesza, W. , and Macias, M. , 2015, “ Numerical Schemes for Initialized Constant and Variable Fractional-Order Derivatives: Matrix Approach and Its Analog Verification,” J. Vib. Control, 22(8), pp. 2032–2044. [CrossRef]
Sierociuk, D. , Malesza, W. , and Macias, M. , 2015, “ Derivation, Interpretation, and Analog Modeling of Fractional Variable Order Derivative Definition,” Appl. Math. Model., 39(13), pp. 3876–3888. [CrossRef]
Samko, S. G. , and Ross, B. , 1993, “ Integration and Differentiation to a Variable Fractional Order,” Integr. Transform. Spec. Funct., 1(4), pp. 277–300. [CrossRef]
Samko, S. G. , 1995, “ Fractional Integration and Differentiation of Variable Order,” Ann. Math., 21(3), pp. 213–236.
Soon, C. M. , Coimbra, C. F. M. , and Kobayashi, M. H. , 2005, “ The Variable Viscoelasticity Oscillator,” Ann. Phys. (Leipzig), 14(6), pp. 378–388. [CrossRef]
Swilam, N. H. , Nagy, A. M. , Assiri, T. A. , and Ali, N. Y. , 2015, “ Numerical Simulations for Variable-Order Fractional Nonlinear Delay Differential Equations,” J. Fractional Calculus Appl., 6(1), pp. 71–82.
Smith, H. , 2010, An Introduction to Delay Differential Equations With Sciences Applications to the Life, Springer, Berlin.
Pielou, E. C. , 1969, An Introduction to Mathematical Ecology, Wiley, New York.
Kalecki, M. , 1935, “ A Macroeconomic Theory of Business Cycle,” Economic, 3(3), pp. 327–344. [CrossRef]
Sun, H. G. , Chen, W. , Sheng, H. , and Chen, Y. Q. , 2010, “ On Mean Square Displacement Behaviors of Anomalous Diffusions With Variable and Random Orders,” Phys. Lett. A, 374(7), pp. 906–910. [CrossRef]
Sun, H. , Chen, W. , Wei, H. , and Chen, Y. , 2011, “ A Comparative Study of Constant-Order and Variable-Order Fractional Models in Characterizing Memory Property of Systems,” Eur. Phys. J., 193(1), pp. 185–192.
Lorenzo, C. F. , and Hartley, T. T. , 2002, “ Variable Order and Distributed Order Fractional Operators,” Nonlinear Dyn., 29(1), pp. 57–98. [CrossRef]
Samiei, E. , Torkamani, S. , and Butcher, E. A. , 2013, “ On Lyapunov Stability of Scalar Stochastic Time-Delayed Systems,” Int. J. Dyn. Control, 1(1), pp. 64–80. [CrossRef]
Alfredo, B. , and Zennaro, M. , 2003, Numerical Methods for Delay Differential Equations, Oxford University Press, Oxford, UK.
Torkamani, S. , Samiei, E. , Bobrenkov, O. , and Butcher, E. A. , 2014, “ Numerical Stability Analysis of Linear Stochastic Delay Differential Equations Using Chebyshev Spectral Continuous Time Approximation,” Int. J. Dyn. Control, 2(2), pp. 210–220. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

The numerical solution of model 1 for various values of α(t) and δ=0.5, with step size h=1/64

Grahic Jump Location
Fig. 2

The numerical solution of model 1 for α(t)=| sin(t)| and δ=0.5, with step size h=1/64

Grahic Jump Location
Fig. 3

The numerical solution of model 1 for α(t)=| sin(t)|,δ=0.5 and T = 30, with step size h=1/64, in the phase plane

Grahic Jump Location
Fig. 4

The numerical solution of model 1 for various values of α(t) and δ=0.5, with step size h=1/64, in logarithmic scale

Grahic Jump Location
Fig. 7

The numerical solution of model 2 for various values of α(t), δ = 1 and T = 10, with step size h=1/64, in logarithmic scale

Grahic Jump Location
Fig. 6

The numerical solution of model 2 for α(t)=1+cos(2t)/3, δ = 1 and T = 30, with step size h=1/64, in the phase plane

Grahic Jump Location
Fig. 5

The numerical solution of model 2 for α(t)=1+cos(2t)/3 and δ = 1, with step size h=1/64

Grahic Jump Location
Fig. 10

The numerical solution of model 3 for various values of α(t) and δ=0.5 with step size h=1/64 in logarithmic scale

Grahic Jump Location
Fig. 9

The numerical solution of model 3 for value of α(t)=tan h(t+1), δ = 1 and T = 30 with step size h=1/64 in the phase plane

Grahic Jump Location
Fig. 8

The numerical solution of model 3 for value of α(t)=tan h(t+1), δ = 1 with step size h=1/64

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In