Tenreiro Machado,
J. A.
, 2012, “
The Effect of Fractional Order in Variable Structure Control,” Comput. Math. Appl.,
64(10), pp. 3340–3350.

[CrossRef]
Gutiérrez,
R. E.
,
Rosário,
J. M.
, and
Tenreiro Machado,
J. A.
, 2010, “
Fractional Order Calculus: Basic Concepts and Engineering Applications,” Math. Probl. Eng.,
2010, p. 375858.

[CrossRef]
Pinto,
C. M. A.
, and
Tenreiro Machado,
J. A.
, 2011, “
Complex Order van der Pol Oscillator,” Nonlinear Dyn.,
65(3), pp. 247–254.

[CrossRef]
Bhrawy,
A. H.
,
Baleanu,
D.
,
Assas,
L. M.
, and
Tenreiro Machado,
J. A.
, 2013, “
On a Generalized Laguerre Operational Matrix of Fractional Integration,” Math. Probl. Eng.,
2013, p. 569286.

[CrossRef]
Bhrawy,
A. H.
,
Zaky,
M. A.
, and
Tenreiro Machado,
J. A.
, 2015, “
Efficient Legendre Spectral Tau Algorithm for Solving the Two-Sided Space-Time Caputo Fractional Advection-Dispersion Equation,” J. Vib. Control,
22(8), pp. 2053–2068.

[CrossRef]
Bhrawy,
A. H.
,
Taha,
T. M.
, and
Tenreiro Machado,
J. A.
, 2015, “
A Review of Operational Matrices and Spectral Techniques for Fractional Calculus,” Nonlinear Dyn.,
81(3), pp. 1023–1052.

[CrossRef]
Bhrawy,
A. H.
,
Doha,
E. H.
, and
Tenreiro Machado,
J. A.
, 2015, “
An Efficient Numerical Scheme for Solving Multi-Dimensional Fractional Optimal Control Problems With a Quadratic Performance Index,” Asian J. Control,
17(6), pp. 2389–2402.

[CrossRef]
Moghaddam,
B. P.
, and
Aghili,
A.
, 2012, “
A Numerical Method for Solving Linear Non-Homogenous Fractional Ordinary Differential Equation,” Appl. Math. Inf. Sc.,
6(3), pp. 441–445.

Lazarevic,
M. P.
, and
Debeljkovic,
D. L.
, 2008, “
Finite Time Stability Analysis of Linear Autonomous Fractional Order Systems With Delayed State,” Asian J. Control,
7(4), pp. 440–447.

[CrossRef]
Zhen,
W.
,
Xia,
H.
, and
Guodong,
S.
, 2011, “
Analysis of Nonlinear Dynamics and Chaos in a Fractional Order Financial System With Time Delay,” Comput. Math. Appl.,
62(3), pp. 1531–1539.

[CrossRef]
Bhalekar,
S.
,
Daftardar-Gejji,
V.
,
Baleanu,
D.
, and
Magin,
R.
, 2012, “
Generalized Fractional Order Bloch Equation With Extended Delay,” Int. J. Bifurcation Chaos,
22(4), pp. 1–15.

[CrossRef]
Magin,
R. L.
, 2010, “
Fractional Calculus Models of Complex Dynamics in Biological Tissues,” Comput. Math. Appl.,
59(5), pp. 1586–1593.

[CrossRef]
Si-Ammour,
A.
,
Djennoune,
S.
, and
Bettayeb,
M.
, 2009, “
A Sliding Mode Control for Linear Fractional Systems With Input and State Delays,” Commun. Nonlinear Sci. Numer. Simul.,
14(5), pp. 2310–2318.

[CrossRef]
Sheng,
H.
,
Chen,
Y. Q.
, and
Qiu,
T.
, 2011, Fractional Processes and Fractional-Order Signal Processing: Techniques and Applications,
Springer,
London, UK.

Coimbra,
C. F. M.
, 2003, “
Mechanics With Variable Order Differential Operators,” Ann. Phys. (Leipzig),
12(11–12), pp. 692–703.

[CrossRef]
Sun,
H. G.
,
Chen,
W.
, and
Chen,
Y. Q.
, 2009, “
Variable-Order Fractional Differential Operators in Anomalous Diffusion Modeling,” Physica A,
388(21), pp. 4586–4592.

[CrossRef]
Ingman,
D.
, and
Suzdalnitsky,
J.
, 2005, “
Application of Differential Operator With Servo-Order Function in Model of Viscoelastic Deformation Process,” J. Eng. Mech.,
131(7), pp. 763–767.

[CrossRef]
Daftardar-Gejji,
V.
,
Sukale,
Y.
, and
Bhalekar,
S.
, 2015, “
Solving Fractional Delay Differential Equations: A New Approach,” Fractional Calculus Appl. Anal.,
18(2), pp. 400–418.

Wang,
Z.
, 2011, “
A Numerical Method for Delayed Fractional-Order Differential Equations,” J. Appl. Math.,
7, p. 256071.

Bhalekar,
S.
, and
Daftardar-Gejji,
V.
, 2011, “
A Predictor–Corrector Scheme for Solving Non-Linear Delay Differential Equations of Fractional Order,” J. Fractional Calculus Appl.,
1(5), pp. 1–9.

Moghaddam,
B. P.
, and
Mostaghim,
Z. S.
, 2015, “
A Matrix Scheme Based on Fractional Finite Difference Method for Solving Fractional Delay Differential Equations With Boundary Conditions,” New Trends Math. Sci.,
3(2), pp. 13–23.

Moghaddam,
B. P.
, and
Mostaghim,
Z. S.
, 2013, “
Numerical Method Based on Finite Difference for Solving Fractional Delay Differential Equations,” J. Taibah Univ. Sci.,
7(3), pp. 120–127.

[CrossRef]
Moghaddam,
B. P.
, and
Mostaghim,
Z. S.
, 2014, “
A Novel Matrix Approach to Fractional Finite Difference for Solving Models Based on Nonlinear Fractional Delay Differential Equations,” Ain Shams Eng. J.,
5(2), pp. 585–594.

[CrossRef]
Morgado,
M. L.
,
Ford,
N. J.
, and
Lima,
P. M.
, 2013, “
Analysis and Numerical Methods for Fractional Differential Equations With Delay,” J. Comput. Appl. Math.,
252, pp. 159–168.

[CrossRef]
Saeed,
U.
, and
Rehman,
M. U.
, 2014, “
Hermite Wavelet Method for Fractional Delay Differential Equations,” J. Differ. Equation,
2014, pp. 1–8.

[CrossRef]
Xu,
Y.
, and
Suat Erturk,
V.
, 2014, “
A Finite Difference Technique for Solving Variable-Order Fractional Integro-Differential Equations,” Bull. Iran. Math. Soc.,
40(3), pp. 699–712.

Bhrawy,
A. H.
, and
Zaky,
M. A.
, 2015, “
Numerical Simulation for Two-Dimensional Variable-Order Fractional Nonlinear Cable Equation,” Nonlinear Dyn.,
80(1), pp. 101–116.

[CrossRef]
Valerio,
D.
, and
da Costa,
J. S.
, 2011, “
Variable-Order Fractional Derivatives and Their Numerical Approximations,” Signal Process.,
91(3), pp. 470–483.

[CrossRef]
Zayernouri,
M.
, and
Karniadakis,
G. E.
, 2014, “
Fractional Spectral Collocation Methods for Linear and Nonlinear Variable Order FPDEs,” J. Comput. Phys. A,
293, pp. 312–338.

[CrossRef]
Zhao,
X.
,
Sun,
Z. Z.
, and
Karniadakis,
G. E.
, 2015, “
Second-Order Approximations for Variable Order Fractional Derivatives: Algorithms and Applications,” J. Comput. Phys.,
293, pp. 312–338.

[CrossRef]
Sierociuk,
D.
,
Malesza,
W.
, and
Macias,
M.
, 2015, “
Numerical Schemes for Initialized Constant and Variable Fractional-Order Derivatives: Matrix Approach and Its Analog Verification,” J. Vib. Control,
22(8), pp. 2032–2044.

[CrossRef]
Sierociuk,
D.
,
Malesza,
W.
, and
Macias,
M.
, 2015, “
Derivation, Interpretation, and Analog Modeling of Fractional Variable Order Derivative Definition,” Appl. Math. Model.,
39(13), pp. 3876–3888.

[CrossRef]
Samko,
S. G.
, and
Ross,
B.
, 1993, “
Integration and Differentiation to a Variable Fractional Order,” Integr. Transform. Spec. Funct.,
1(4), pp. 277–300.

[CrossRef]
Samko,
S. G.
, 1995, “
Fractional Integration and Differentiation of Variable Order,” Ann. Math.,
21(3), pp. 213–236.

Soon,
C. M.
,
Coimbra,
C. F. M.
, and
Kobayashi,
M. H.
, 2005, “
The Variable Viscoelasticity Oscillator,” Ann. Phys. (Leipzig),
14(6), pp. 378–388.

[CrossRef]
Swilam,
N. H.
,
Nagy,
A. M.
,
Assiri,
T. A.
, and
Ali,
N. Y.
, 2015, “
Numerical Simulations for Variable-Order Fractional Nonlinear Delay Differential Equations,” J. Fractional Calculus Appl.,
6(1), pp. 71–82.

Smith,
H.
, 2010, An Introduction to Delay Differential Equations With Sciences Applications to the Life,
Springer,
Berlin.

Pielou,
E. C.
, 1969, An Introduction to Mathematical Ecology,
Wiley,
New York.

Kalecki,
M.
, 1935, “
A Macroeconomic Theory of Business Cycle,” Economic,
3(3), pp. 327–344.

[CrossRef]
Sun,
H. G.
,
Chen,
W.
,
Sheng,
H.
, and
Chen,
Y. Q.
, 2010, “
On Mean Square Displacement Behaviors of Anomalous Diffusions With Variable and Random Orders,” Phys. Lett. A,
374(7), pp. 906–910.

[CrossRef]
Sun,
H.
,
Chen,
W.
,
Wei,
H.
, and
Chen,
Y.
, 2011, “
A Comparative Study of Constant-Order and Variable-Order Fractional Models in Characterizing Memory Property of Systems,” Eur. Phys. J.,
193(1), pp. 185–192.

Lorenzo,
C. F.
, and
Hartley,
T. T.
, 2002, “
Variable Order and Distributed Order Fractional Operators,” Nonlinear Dyn.,
29(1), pp. 57–98.

[CrossRef]
Samiei,
E.
,
Torkamani,
S.
, and
Butcher,
E. A.
, 2013, “
On Lyapunov Stability of Scalar Stochastic Time-Delayed Systems,” Int. J. Dyn. Control,
1(1), pp. 64–80.

[CrossRef]
Alfredo,
B.
, and
Zennaro,
M.
, 2003, Numerical Methods for Delay Differential Equations,
Oxford University Press,
Oxford, UK.

Torkamani,
S.
,
Samiei,
E.
,
Bobrenkov,
O.
, and
Butcher,
E. A.
, 2014, “
Numerical Stability Analysis of Linear Stochastic Delay Differential Equations Using Chebyshev Spectral Continuous Time Approximation,” Int. J. Dyn. Control,
2(2), pp. 210–220.

[CrossRef]