0
Review Article

Initialization of Identification of Fractional Model by Output-Error Technique

[+] Author and Article Information
Abir Khadhraoui

Laboratoire des systèmes Electriques (LSE),
Ecole Nationale d'Ingenieurs de Tunis,
Tunis, Tunisia
e-mail: abbir_k2007@yahoo.fr

Khaled Jelassi

Laboratoire des systèmes Electriques (LSE),
Ecole Nationale d'Ingenieurs de Tunis,
Tunis, Tunisia
e-mail: jelassi_2000@yahoo.com

Jean-Claude Trigeassou

Laboratoire Intégration du Matériau au Système
(IMS-APS),
Université Bordeaux 1,
Bordeaux 33000, France
e-mail: jeanclaude.trigeassou@yahoo.fr

Pierre Melchior

Laboratoire Intégration du Matériau au Système
(IMS-APS),
Université Bordeaux 1,
Bordeaux 33000, France
e-mail: pierre.melchior@laps.ims-bordeaux.fr

1Corresponding author.

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received January 27, 2015; final manuscript received May 4, 2015; published online August 26, 2015. Assoc. Editor: Hiroshi Yabuno.

J. Comput. Nonlinear Dynam 11(2), 020801 (Aug 26, 2015) (12 pages) Paper No: CND-15-1025; doi: 10.1115/1.4030541 History: Received January 27, 2015

A bad initialization of output-error (OE) technique can lead to an inappropriate identification results. In this paper, we introduce a solution to this problem; the basic idea is to estimate the parameters and the fractional order of the noninteger system by a new approach of least-squares (LS) method based on repeated fractional integration to initialize OE technique. It will be shown that LS method offers a good initialization to OE algorithm and leads to acceptable identification results. The performance of the proposed method is shown through numerical simulation examples.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Liouville, J. , 1932, “Some Questions About Geometry and Mechanics and a New Genre of Computing to Solve These Equations (Mémoire sur Quelques Questions de Géométrie et de Mécanique et sur un Nouveau Genre de Calcul Pour Résoudre ces Equations),” J. Ec. Polytech., 13, pp. 71–162.
Riemann, B. , 1876, “Testing of a General Conception of Integration and Derivation (Essai d'une Conception Générale de L'intégration et de la Dérivation),” Works Math. Res., pp. 331–344.
Oldham, K. B. , and Spanier, J. , 1973, “Diffusive Transport to Planar, Cylindrical and Spherical Electrodes,” Electroanal. Chem. Interfacial Electrochem, 41(3), pp. 351–358. [CrossRef]
Sabatier, J. , Aoun, M. , Oustaloup, A. , Gregoire, G. , Ragot, F. , and Roy, P. , 2006, “Fractional System Identification for Lead Acid Battery Sate Charge Estimation,” Signal Process., 86(10), pp. 2645–2657. [CrossRef]
Battaglia, J. L. , Cois, O. , Puigsegur, L. , and Oustaloup, A. , 2001, “Solving an Inverse Heat Conduction Problem Using a Non-Integer Identified Model,” Int. J. Heat Mass Transfer, 44(14), pp. 2671–2680. [CrossRef]
Benchellal, A. , Bachir, S. , Poinot, T. , and Trigeassou, J. C. , 2004, “Identification of a Non-Integer Model of Induction Machines,” 1st IFAC Workshop on Fractional Differentiation and its Applications, Bordeaux, France, pp. 400–407.
Le Lay, L. , 1998, “Identification Fréquentielle et Temporelle par Modèle Non-Entier,” Ph.D. thesis, Université de Bordeaux 1, Bordeaux, France.
Lin, J. , 2001, “Modélisatoin et Identification de Systemes d'ordre non Entier,” Ph.D. thesis, Université de Poitiers, Poitiers, France.
Cois, O. A. , Oustaloup, A. , Poinot, T. , and Battaglia, J. L. , 2001, “Fractional State Variable Filter for System Identification by Fractional Model,” ECC Conference, Porto, Portugal.
Maiti, D. , Acharya, A. , Janarthanan, R. , and Konar, A. , 2008, “Complete Identification of a Dynamic Fractional Order System Under Non-Ideal Conditions Using Fractional Differ Integral Definitions,” 16th International Conference on Advanced Computing and Communications (ADCOM), Chennai, India.
Victor, S. , Malti, R. , and Oustaloup, A. , 2009, “Instrumental Variable Method With Optimal Fractional Differentiation Order for Continuous-Time System Identification,” 15th IFAC Symposium on System Identification, Saint-Malo, France.
Benchellal, A. , Poinot, T. , and Trigeassou, J. C. , 2005, “Approximation and Identification of Fractional Systems,” ASME Paper No. DETC2005-84784.
Trigeassou, J. C. , Poinot, T. , Lin, J. , Oustaloup, A. , and Levron, F. , 1999, “Modeling and Identification of a Non-Integer Order System,” ECC’99, European Control Conference, Karlsruhe, Germany.
Djamah, T. , Mansouri, R. , Djennoune, S. , Guermah, S. , and Bettayeb, M. , 2007, “Identification of Fractional System With Optimal Reduced Integer Order Model,” 2nd International Conference on Modeling, Simulation and Applied Optimization ICMSAO’07, Abu Dhabi, UAE.
Poinot, T. , and Trigeassoui, J. C. , 2004, “Identification of Fractional Systems Using an Output-Error Technique,” Nonlinear Dyn., 38(1–4), pp. 133–154. [CrossRef]
Ljung, L. , 1987, System Identification—Theory for the User, Prentice Hall, Englewood Cliffs, NJ.
Pearson, A. E. , 1988, “Least Squares Parameter Identification of Nonlinear Differential I/O Models,” 27th IEEE Conference on Decision and Control, Austin, TX, Dec. 7–9, pp. 1931–1935.
Van den Hof, P. M. J. , 1989, “Criterion Based Equivalence for Equation Error Models,” IEEE Trans. Autom. Control, 34(2), pp. 191–193. [CrossRef]
Khadrahoui, A. , Jelassi, K. , and Trigeassou, J. C. , 2013, “Identification of a Fractional Order Model by a Least Squares Technique: Hn Model,” Prog. Comput. Appl., 2(2), pp. 91–101.
Khadrahoui, A. , Jelassi, K. , and Trigeassou, J. C. , 2013, “Identification of a Fractional Order Model by a Least Squares Technique: Hn 1, n 2 Model,” Sciences and Techniques of Automatic Control and Computer Engineering (STA), Sousse, Dec. 20–22, pp. 461–467.
Oldham, K. B. , and Spanier, J. , 1974, The Fractional Calculus, Academic Press, New York.
Podlubny, I. , 1999, Fractional Differential Equations, Academic Press, San Diego, CA.
Montseny, G. , 1998, “Diffusive Representation of Pseudo Differential Time Operators,” ESSAIM, Vol. 5, pp. 159–175.
Sabatier, J. , Merveillaut, M. , Malti, R. , and Oustaloup, A. , 2008, “On a Representation of Fractional Order Systems: Interests for the Initial Condition Problem,” 3rd IFAC Workshop, FDA’08, Anhara, Turkey.
Heleschewitz, D. , and Matignon, D. , 1998, “Diffusive Realizations of Fractional Integro-Differential Operators: Structural Analysis Under Approximation,” Conference IFAC, System, Structure and Control, Vol. 2, Nantes, France, pp. 243–248.
Helechewitz, D. , 2000, “Analyse et Simulation de Systèmes Différentiels Fractionnaires et Pseudo-Différentiels Sous Representation Diffusive,” Ph.D. thesis, ENST Paris, Paris, France.
Trigeassou, J. C. , Poinot, P. , Lin, J. , Oustaloup, A. , and Levron, F. , 1999, “Modelling and Identification of a Non-Integer Order System,” ECC’99 European Control Conference, Karlsruhe, Germany.
Jelloul, A. , Jelassi, K. , Trigeassou, J. C. , and Melchior, P. , 2011, “Comparison of Fractional Identification Techniques for Rotor Skin Effect in Induction Machines,” IJCSI, 8(3).
Trigeassou, J. C. , Maamri, N. , Sabatier, J. , and Oustaloup, A. , 2012, “State Variables and Transients of Fractional Order Differential Systems,” Comput. Math. Appl., 64(10), pp. 3117–3140. [CrossRef]
Trigeassou, J. C. , Maamri, N. , Sabatier, J. , and Oustaloupa, A. , 2013, “The Infinite State Approach: Origin and Necessity,” Comput. Math. Appl., 66(5), pp. 892–907. [CrossRef]
Richalet, J. , Rault, A. , and Pouliquen, R. , 1971, Identification of Process by the Output Error Method (Identification des Processus par la Méthode du Modéle), Gordon and Breach, Paris, France.
Marquardt, D. W. , 1963, “An Algorithm for Least-Squares Estimation of Non-Linear Parameters,” J. Soc. Ind. Appl. Math., 11(2), pp. 431–441. [CrossRef]
Jelloul, A. , Jelassi, K. , and Trigeassou, J. C. , 2012, “Fractional Modeling and Identification of Rotor Skin Effect in Induction Machines (Modelisation et Identification des Effets de Frequence dans la Machine Asynchrone par Approche d'ordre non entier),” Ph.D. thesis, ENIT, Tunis, Tunisia.
Trigeassou, J. C. , 1988, Computer-Assisted of Experimental Models Search (Recherche des Modeles Experimentaux Assistée par Ordinateur), Lavoisier-Tec et Doc, Paris, France.
Khadrahoui, A. , Jelassi, K. , and Trigeassou, J. C. , 2014, “Least Squares and Instrumental Variable Techniques for Global Identification of Fractional Differential Equation,” Electrical Sciences and Technologies in Maghreb (CISTEM) International Conference, Tunis, Tunisia.

Figures

Grahic Jump Location
Fig. 1

Frequency discretization of μ(w)

Grahic Jump Location
Fig. 2

The modal representation (infinite state representation) of fractional integrator

Grahic Jump Location
Fig. 3

Simulation of a one derivate FDE

Grahic Jump Location
Fig. 4

Simulation of the two derivate DFE

Grahic Jump Location
Fig. 5

OE identification technique

Grahic Jump Location
Fig. 6

Estimated and exact response of Hn model in no-noise condition

Grahic Jump Location
Fig. 8

Evolution of the estimated orders and parameters of Hn model in no-noise condition

Grahic Jump Location
Fig. 9

Evolution of the estimated orders and parameters of Hn1,n2 model without noise

Grahic Jump Location
Fig. 10

Evolution of the estimated orders and parameters of Hn1,n2,n3 model without noise

Grahic Jump Location
Fig. 11

Exact and estimated response in noisy context: Hn model

Grahic Jump Location
Fig. 12

Exact and estimated response in noisy context: Hn1,n2 model

Grahic Jump Location
Fig. 15

Exact and estimated response in noisy context: Hn1,n2,n3 model

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In