0
Research Papers

A Numerical Method for Solving Fractional Optimal Control Problems Using Ritz Method

[+] Author and Article Information
Ali Nemati

Department of Mathematics,
Payame Noor University,
P.O. Box 19395-3697,
Tehran, Iran
e-mail: ali.nemati83@gmail.com

Sohrab Ali Yousefi

Department of Mathematics,
Shahid Beheshti University, G.C.,
Tehran, Iran
e-mail: s-yousefi@sbu.ac.ir

1Corresponding author.

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received January 6, 2015; final manuscript received January 25, 2016; published online February 25, 2016. Assoc. Editor: Hiroshi Yabuno.

J. Comput. Nonlinear Dynam 11(5), 051015 (Feb 25, 2016) (7 pages) Paper No: CND-15-1006; doi: 10.1115/1.4032694 History: Received January 06, 2015; Revised January 25, 2016

Our paper presents a new method to solve a class of fractional optimal control problems (FOCPs) based on the numerical polynomial approximation. In the proposed method, the fractional derivative in the dynamical system is considered in the Caputo sense. The approach used here is to approximate the state function by the Legendre orthonormal basis by using the Ritz method. Next, we apply a new constructed operational matrix to approximate fractional derivative of the basis. After transforming the problem into a system of algebraic equations, the problem is solved via the Newton's iterative method. Finally, the convergence of the new method is investigated and some examples are included to illustrate the effectiveness and applicability of the proposed methodology.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Das, S. , 2008, Functional Fractional Calculus for System Identification and Controls, Springer, New York.
Benson, D. A. , Meerschaert, M. M. , and Revielle, J. , 2013, “ Fractional Calculus in Hydrologic Modeling: A Numerical Perspective,” Adv. Water Resour., 51, pp. 479–497. [CrossRef] [PubMed]
Zamani, M. , Karimi-Ghartemani, M. , and Sadati, N. , 2007, “ Fopid Controller Design for Robust Performance Using Particle Swarm Optimization,” Fract. Calculus Appl. Anal., 10(2), pp. 169–187.
Kilbas, A. A. , Srivastava, H. M. , and Trujillo, J. J. , 2006, Theory and Applications of Fractional Differential Equations, North Holland Mathematics Studies, Elsevier Science B. V., Amsterdam, The Netherlands.
Biswas, R. K. , and Sen, S. , 2011, “ Fractional Optimal Control Problems With Specified Final Time,” ASME J. Comput. Nonlinear Dyn., 6(2) p. 021009. [CrossRef]
Mehedi, H. M. , Agrawal, O. P. , and Tangpong, X. W. , 2012, “ A Numerical Scheme for a Class of Parametric Problem of Fractional Variational Calculus,” ASME J. Comput. Nonlinear Dyn., 7, pp. 21–25.
Lotfi, A. , and Yousefi, S. A. , 2013, “ A Numerical Technique for Solving a Class of Fractional Variational Problems,” J. Comput. Appl. Math., 237(1), pp. 633–643. [CrossRef]
Malinowska, A. B. , and Torres, D. F. M. , 2012, Introduction to the Fractional Calculus of Variations, Imperial College Press, London.
Almeida, R. , and Torres, D. F. M. , 2011, “ Necessary and Sufficient Conditions for the Fractional Calculus of Variations With Caputo Derivatives,” Commun. Nonlinear Sci. Numer. Simul., 16(3), pp. 1490–1500. [CrossRef]
Malinowska, A. B. , Almeida, R. , and Torres, D. F. M. , 2010, “ A Fractional Calculus of Variations for Multiple Integrals With Application to Vibrating String,” J. Math. Phys., 51, p. 33503. [CrossRef]
Agrawal, O. P. , 2004, “ A General Formulation and Solution Scheme for Fractional Optimal Control Problems,” Nonlinear Dyn., 38(1), pp. 323–337. [CrossRef]
Agrawal, O. P. , and Baleanu, D. , 2007, “ A Hamiltonian Formulation and a Direct Numerical Scheme for Fractional Optimal Control Problems,” J. Vib. Control, 13(9–10), pp. 1269–1281. [CrossRef]
Agrawal, O. P. , 2008, “ A Formulation and Numerical Scheme for Fractional Optimal Control Problems,” J. Vib. Control, 14(9–10), pp. 1291–1299. [CrossRef]
Baleanu, D. , and Trujillo, J. I. , 2010, “ A New Method of Finding the Fractional Euler-Lagrange and Hamilton Equations Within Caputo Fractional Derivatives,” Commun. Nonlinear Sci. Numer. Simul., 15(5), pp. 1111–1115. [CrossRef]
Almeida, R. , and Torres, D. F. M. , 2009, “ Calculus of Variations With Fractional Derivatives and Fractional Integrals,” Appl. Math. Lett., 22(12), pp. 1816–1820. [CrossRef]
Khosravian-Araba, H. , and Almeidab, R. , 2015, “ Numerical Solution for Fractional Variational Problems Using the Jacobi Polynomials,” Appl. Math. Modell., 39(21), pp. 6461–6470. [CrossRef]
Agrawal, O. P. , 2006, “ Fractional Variational Calculus and the Transversality Conditions,” J. Phys. A: Math. Gen., 39(33), p. 10375. [CrossRef]
Malekia, M. , Hashima, I. , Abbasbandy, S. , and Alsaedi, A. , 2015, “ Direct Solution of a Type of Constrained Fractional Variational Problems Via an Adaptive Pseudospectral Method,” J. Comput. Appl. Math., 283, pp. 41–57. [CrossRef]
Defterli, O. , Baleanu, D. , and Agrawal, O. M. P. , 2009, “ A Central Difference Numerical Scheme for Fractional Optimal Control Problems,” J. Vib. Control, 15, pp. 583–597. [CrossRef]
Lotfi, A. , Yousefi, S. A. , and Dehghan, M. , 2011, “ The Use of a Legendre Multiwavelet Collocation Method for Solving the Fractional Optimal Control Problems,” J. Vib. Control, 17, pp. 2059–2065. [CrossRef]
Elsgolts, L. , 1977, Differential Equations and Calculus of Variations, Mir, Moscow, Russia, (translated from the Russian by G. Yankovsky).
Mao, Z. , Xiao, A. , Wang, D. , Yu, Z. , and Shi, L. , 2015, “ Exponentially Accurate Rayleigh–Ritz Method for Fractional Variational Problems,” ASME J. Comput. Nonlinear Dyn., 10(5), p. 051009.
Khader, M. M. , 2014, “ An Efficient Approximate Method for Solving Fractional Variational Problems,” Appl. Math. Modell., 39(5–6), pp. 1643–1649. [CrossRef]
Doha, E. H. , Bhrawy, A. H. , and Ezz-Eldien, S. S. , 2011, “ A Chebyshev Spectral Method Based on Operational Matrix for Initial and Boundary Value Problems of Fractional Order,” Comput. Math. Appl., 62(5), pp. 2364–2373. [CrossRef]
Lakestani, M. , Dehghan, M. , and Irandoust-Pakchin, S. , 2012, “ The Construction of Operational Matrix of Fractional Derivatives Using B-Spline Functions,” Commun. Nonlinear Sci. Numer. Simul., 17(3), pp. 1149–1162. [CrossRef]
Saadatmandi, A. , and Dehghan, M. , 2010, “ A New Operational Matrix for Solving Fractional-Order Differential Equations,” Comput. Math. Appl., 59(3), pp. 1326–1336. [CrossRef]
Saadatmandi, A. , and Dehghan, M. , 2011, “ A Tau Approach for Solution of the Space Fractional Diffusion Equation,” Comput. Math. Appl., 62(3), pp. 1135–1142. [CrossRef]
Saadatmandi, A. , 2011, “ Bernstein Operational Matrix of Fractional Derivatives and It's Applications,” Appl. Math. Modell., 38, pp. 1365–1372. [CrossRef]
Yousefi, S. A. , Lotfi, A. , and Dehghan, M. , 2013, “ Numerical Solution of a Class of Fractional Optimal Control Problems Via the Legendre Orthonormal Basis Combined With the Operational Matrix and the Gauss Quadrature Rule,” J. Comput. Appl. Math., 250, pp. 143–160. [CrossRef]
Lotfi, A. , Dehghan, M. , and Yousefi, S. A. , 2011, “ A Numerical Technique for Solving Fractional Optimal Control Problems,” Comput. Math. Appl., 62(3), pp. 1055–1067. [CrossRef]
Kreyszig, E. , 1978, Introductory Functional Analysis With Applications, Wiley, New York.
Rivlin, T. J. , 1981, An Introduction to the Approximation of Function, Dover Publication, New York.

Figures

Grahic Jump Location
Fig. 1

Exact and approximate state and control functions for example 1

Grahic Jump Location
Fig. 2

Exact and approximate state and control functions for example 2

Grahic Jump Location
Fig. 3

Exact and approximate state and control functions for example 3

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In