Bhattacharya,
P.
,
Chakrabarti,
B. K.
, and
Kamal
, 2011, “
A Fractal Model of Earthquake Occurrence: Theory, Simulations and Comparisons With the Aftershock Data,” J. Phys.: Conf. Ser.,
319(1), p. 012004.
[CrossRef]
Turcotte,
D. L.
, and
Malamud,
B. D.
, 2002, “
14 Earthquakes as a Complex System,” Int. Geophys.,
81, pp. 209–227–IV.
Makowiec,
D.
,
Dudkowska,
A.
,
Gałaska,
R.
, and
Rynkiewicz,
A.
, 2009, “
Multifractal Estimates of Monofractality in RR-Heart Series in Power Spectrum Ranges,” Phys. A,
388(17), pp. 3486–3502.
[CrossRef]
Machado,
J. T.
, 2012, “
Accessing Complexity From Genome Information,” Commun. Nonlinear Sci. Numer. Simul.,
17(6), pp. 2237–2243.
[CrossRef]
Johnson,
N. F.
,
Jefferies,
P.
, and
Hui,
P. M.
, 2003, Financial Market Complexity,
Oxford University Press,
Oxford.
Huang,
W.-Q.
,
Zhuang,
X.-T.
, and
Yao,
S.
, 2009, “
A Network Analysis of the Chinese Stock Market,” Phys. A,
388(14), pp. 2956–2964.
[CrossRef]
Amaral,
L. A. N.
,
Scala,
A.
,
Barthélémy,
M.
, and
Stanley,
H. E.
, 2000, “
Classes of Small-World Networks,” Proc. Natl. Acad. Sci. U. S. A.,
97(21), pp. 11149–11152.
[CrossRef] [PubMed]
Sen,
P.
,
Dasgupta,
S.
,
Chatterjee,
A.
,
Sreeram,
P.
,
Mukherjee,
G.
, and
Manna,
S.
, 2003, “
Small-World Properties of the Indian Railway Network,” Phys. Rev. E,
67(3), p. 036106.
[CrossRef]
M'Chirgui,
Z.
, 2012, “
Small-World or Scale-Free Phenomena in Internet: What Implications for the Next-Generation Networks?,” Rev. Eur. Stud.,
4(1), pp. 85–93.
Zhang,
W.-B.
, 2002, “
Theory of Complex Systems and Economic Dynamics,” Nonlinear Dyn., Psychol., Life Sci.,
6(2), pp. 83–101.
[CrossRef]
Foxon,
T. J.
,
Köhler,
J.
,
Michie,
J.
, and
Oughton,
C.
, 2013, “
Towards a New Complexity Economics for Sustainability,” Cambridge J. Econ.,
37(1), pp. 187–208.
[CrossRef]
Barabási,
A.-L.
,
Jeong,
H.
,
Néda,
Z.
,
Ravasz,
E.
,
Schubert,
A.
, and
Vicsek,
T.
, 2002, “
Evolution of the Social Network of Scientific Collaborations,” Phys. A,
311(3), pp. 590–614.
[CrossRef]
Li,
W.
,
Zhang,
X.
, and
Hu,
G.
, 2007, “
How Scale-Free Networks and Large-Scale Collective Cooperation Emerge in Complex Homogeneous Social Systems,” Phys. Rev. E,
76(4), p. 045102.
[CrossRef]
Huberman,
B. A.
,
Pirolli,
P. L.
,
Pitkow,
J. E.
, and
Lukose,
R. M.
, 1998, “
Strong Regularities in World Wide Web Surfing,” Science,
280(5360), pp. 95–97.
[CrossRef] [PubMed]
Adamic,
L. A.
, and
Huberman,
B. A.
, 2000, “
Power-Law Distribution of the World Wide Web,” Science,
287(5461), p. 2115.
[CrossRef]
Kostić,
S.
,
Vasović,
N.
,
Franović,
I.
, and
Todorović,
K.
, 2014, “
Complex Dynamics of Spring-Block Earthquake Model Under Periodic Parameter Perturbations,” ASME J. Comput. Nonlinear Dyn.,
9(3), p. 031019.
[CrossRef]
Lopes,
A. M.
, and
Machado,
J. T.
, 2012, “
Dynamical Behaviour of Multi-Particle Large-Scale Systems,” Nonlinear Dyn.,
69(3), pp. 913–925.
[CrossRef]
Strogatz,
S. H.
, 2001, “
Exploring Complex Networks,” Nature,
410(6825), pp. 268–276.
[CrossRef] [PubMed]Haken, 2006, Information and Self-Organization: A Macroscopic Approach to Complex Systems,
Springer,
Berlin, Heidelberg.
Pinto,
C.
,
Lopes,
A. M.
, and
Machado,
J.
, 2012, “
A Review of Power Laws in Real Life Phenomena,” Commun. Nonlinear Sci. Numer. Simul.,
17(9), pp. 3558–3578.
[CrossRef]
Newman,
M. E.
, 2005, “
Power Laws, Pareto Distributions and Zipf's Law,” Contemp. Phys.,
46(5), pp. 323–351.
[CrossRef]
Baleanu,
D.
, 2008, “
Fractional Constrained Systems and Caputo Derivatives,” ASME J. Comput. Nonlinear Dyn.,
3(2), p. 021102.
[CrossRef]
Guzzetti,
F.
,
Malamud,
B. D.
,
Turcotte,
D. L.
, and
Reichenbach,
P.
, 2002, “
Power-Law Correlations of Landslide Areas in Central Italy,” Earth Planet. Sci. Lett.,
195(3), pp. 169–183.
[CrossRef]
Balasis,
G.
,
Daglis,
I. A.
,
Papadimitriou,
C.
,
Anastasiadis,
A.
,
Sandberg,
I.
, and
Eftaxias,
K.
, 2011, “
Quantifying Dynamical Complexity of Magnetic Storms and Solar Flares Via Nonextensive Tsallis Entropy,” Entropy,
13(10), pp. 1865–1881.
[CrossRef]
Levada,
A.
, 2014, “
Learning From Complex Systems: On the Roles of Entropy and Fisher Information in Pairwise Isotropic Gaussian Markov Random Fields,” Entropy,
16(2), pp. 1002–1036.
[CrossRef]
Seely,
A. J.
,
Newman,
K. D.
, and
Herry,
C. L.
, 2014, “
Fractal Structure and Entropy Production Within the Central Nervous System,” Entropy,
16(8), pp. 4497–4520.
[CrossRef]
Feldman,
D. P.
, and
Crutchfield,
J. P.
, 1998, “
Measures of Statistical Complexity: Why?,” Phys. Lett. A,
238(4), pp. 244–252.
[CrossRef]
Kwapień,
J.
, and
Drożdż,
S.
, 2012, “
Physical Approach to Complex Systems,” Phys. Rep.,
515(3), pp. 115–226.
[CrossRef]
Machado,
J. A. T.
, and
Lopes,
A. M.
, 2013, “
Analysis and Visualization of Seismic Data Using Mutual Information,” Entropy,
15(9), pp. 3892–3909.
[CrossRef]
Pidgeon,
N.
, and
O'Leary,
M.
, 2000, “
Man-Made Disasters: Why Technology and Organizations (Sometimes) Fail,” Saf. Sci.,
34(1), pp. 15–30.
[CrossRef]
Liu,
T.
,
Zhong,
M.
, and
Xing,
J.
, 2005, “
Industrial Accidents: Challenges for China's Economic and Social Development,” Saf. Sci.,
43(8), pp. 503–522.
[CrossRef]
Costa,
M.
,
Goldberger,
A. L.
, and
Peng,
C.-K.
, 2002, “
Multiscale Entropy Analysis of Complex Physiologic Time Series,” Phys. Rev. Lett.,
89(6), p. 068102.
[CrossRef] [PubMed]
Baranger,
M.
, 2000, Chaos, Complexity, and Entropy,
New England Complex Systems Institute,
Cambridge, MA.
Solé,
R. V.
, and
Valverde,
S.
, 2004, “
Information Theory of Complex Networks: On Evolution and Architectural Constraints,” Complex Networks,
Springer,
Berlin, Heidelberg, pp. 189–207.
Svítek,
M.
, 2015, “
Towards Complex System Theory,” Neural Network World,
25(1), pp. 5–33.
[CrossRef]
Cai,
Y.
,
Qi,
L.
, and
Wang,
C.
, 2013, “
A Data Mining Model of Complex System Based on Improved Cluster Analysis Model and Rough Set Theory,” Int. J. Appl. Math. Stat.,
43(13), pp. 45–51.
Sacchi,
L.
,
Dagliati,
A.
, and
Bellazzi,
R.
, 2015, “
Analyzing Complex Patients? Temporal Histories: New Frontiers in Temporal Data Mining,” Data Mining in Clinical Medicine,
Springer,
New York, pp. 89–105.
Sugihara,
G.
,
May,
R.
,
Ye,
H.
,
Hsieh,
C.-H.
,
Deyle,
E.
,
Fogarty,
M.
, and
Munch,
S.
, 2012, “
Detecting Causality in Complex Ecosystems,” Science,
338(6106), pp. 496–500.
[CrossRef] [PubMed]
Shao,
Y.-H.
,
Gu,
G.-F.
,
Jiang,
Z.-Q.
,
Zhou,
W.-X.
, and
Sornette,
D.
, 2012, “
Comparing the Performance of FA, DFA and DMA Using Different Synthetic Long-Range Correlated Time Series,” Sci. Rep.,
2, pp. 1–5.
[CrossRef]
Martinez,
G. J.
,
Adamatzky,
A.
, and
Alonso-Sanz,
R.
, 2012, “
Complex Dynamics of Elementary Cellular Automata Emerging From Chaotic Rules,” Int. J. Bifurcation Chaos,
22(2), p. 1250023.
[CrossRef]
Cervelle,
J.
,
Dennunzio,
A.
, and
Formenti,
E.
, 2012, “
Chaotic Behavior of Cellular Automata,” Computational Complexity: Theory, Techniques, and Applications,
Springer,
New York, pp. 479–489.
Holcombe,
M.
,
Adra,
S.
,
Bicak,
M.
,
Chin,
S.
,
Coakley,
S.
,
Graham,
A. I.
,
Green,
J.
,
Greenough,
C.
,
Jackson,
D.
,
Kiran,
M.
,
MacNeil,
S.
,
Maleki-Dizaji,
A.
,
McMinn,
P.
,
Pogson,
M.
,
Poole,
R.
,
Qwarnstrom,
E.
,
Ratnieks,
F.
,
Rolfe,
M. D.
,
Smallwood,
R.
,
Sun,
T.
, and
Worth,
D.
, 2012, “
Modeling Complex Biological Systems Using an Agent-Based Approach,” Integr. Biol.,
4(1), pp. 53–64.
[CrossRef]
Niazi,
M. A.
, and
Hussain,
A.
, 2012, Cognitive Agent-Based Computing-I: A Unified Framework for Modeling Complex Adaptive Systems Using Agent-Based and Complex Network-Based Methods, Vol.
1,
Springer Science & Business Media,
Dordrecht, Heidelberg.
Albert,
R.
, and
Barabási,
A.-L.
, 2002, “
Statistical Mechanics of Complex Networks,” Rev. Mod. Phys.,
74(1), pp. 47–97.
[CrossRef]
Newman,
M. E.
, 2003, “
The Structure and Function of Complex Networks,” SIAM Rev.,
45(2), pp. 167–256.
[CrossRef]
Ravasz,
E.
, and
Barabási,
A.-L.
, 2003, “
Hierarchical Organization in Complex Networks,” Phys. Rev. E,
67(2), p. 026112.
[CrossRef]
Clauset,
A.
,
Shalizi,
C. R.
, and
Newman,
M. E.
, 2009, “
Power-Law Distributions in Empirical Data,” SIAM Rev.,
51(4), pp. 661–703.
[CrossRef]
Csányi,
G.
, and
Szendrői,
B.
, 2004, “
Structure of a Large Social Network,” Phys. Rev. E,
69(3), p. 036131.
[CrossRef]
Pinto,
C.
,
Lopes,
A. M.
, and
Machado,
J. T.
, 2014, “
Double Power Laws, Fractals and Self-Similarity,” Appl. Math. Modell.,
38(15–16), pp. 4019–4026.
[CrossRef]
Jóhannesson,
G.
,
Björnsson,
G.
, and
Gudmundsson,
E. H.
, 2006, “
Afterglow Light Curves and Broken Power Laws: A Statistical Study,” Astrophys. J., Lett.,
640(1), pp. L5–L8.
[CrossRef]
Khinchin,
A. I.
, 1957, Mathematical Foundations of Information Theory, Vol.
434,
Courier Dover Publications,
New York.
Machado,
J. T.
, 2014, “
Fractional Order Generalized Information,” Entropy,
16(4), pp. 2350–2361.
[CrossRef]
Valério,
D.
,
Trujillo,
J. J.
,
Rivero,
M.
,
Machado,
J. T.
, and
Baleanu,
D.
, 2013, “
Fractional Calculus: A Survey of Useful Formulas,” Eur. Phys. J.: Spec. Top.,
222(8), pp. 1827–1846.
[CrossRef]
Kullback,
S.
, and
Leibler,
R. A.
, 1951, “
On Information and Sufficiency,” Annals Math. Stat.,
22(1), pp. 79–86.
[CrossRef]
Cox,
T. F.
, and
Cox,
M. A.
, 2000, Multidimensional Scaling,
CRC Press,
Boca Raton, FL.
Machado,
J. T.
, 2013, “
Visualizing Non-Linear Control System Performance by Means of Multidimensional Scaling,” ASME J. Comput. Nonlinear Dyn.,
8(4), p. 041017.
[CrossRef]
Kantz,
H.
, and
Schreiber,
T.
, 2004, Nonlinear Time Series Analysis, Vol.
7,
Cambridge University,
Cambridge, UK.
Marwan,
N.
,
Romano,
M. C.
,
Thiel,
M.
, and
Kurths,
J.
, 2007, “
Recurrence Plots for the Analysis of Complex Systems,” Phys. Rep.,
438(5), pp. 237–329.
[CrossRef]
Perc,
M.
,
Green,
A. K.
,
Dixon,
C. J.
, and
Marhl,
M.
, 2008, “
Establishing the Stochastic Nature of Intracellular Calcium Oscillations From Experimental Data,” Biophys. Chem.,
132(1), pp. 33–38.
[CrossRef] [PubMed]
Kostić,
S.
,
Vasović,
N.
,
Perc,
M.
,
Toljić,
M.
, and
Nikolić,
D.
, 2013, “
Stochastic Nature of Earthquake Ground Motion,” Phys. A,
392(18), pp. 4134–4145.
[CrossRef]
Takens,
F.
, 1981, Detecting Strange Attractors in Turbulence,
Springer,
Berlin, Heidelberg.
Kaplan,
D. T.
, and
Glass,
L.
, 1992, “
Direct Test for Determinism in a Time Series,” Phys. Rev. Lett.,
68(4), pp. 427–430.
[CrossRef] [PubMed]
Fraser,
A. M.
, and
Swinney,
H. L.
, 1986, “
Independent Coordinates for Strange Attractors From Mutual Information,” Phys. Rev. A,
33(2), pp. 1134–1140.
[CrossRef]
Kennel,
M. B.
,
Brown,
R.
, and
Abarbanel,
H. D.
, 1992, “
Determining Embedding Dimension for Phase-Space Reconstruction Using a Geometrical Construction,” Phys. Rev. A,
45(6), pp. 3403–3411.
[CrossRef] [PubMed]
Theiler,
J.
,
Eubank,
S.
,
Longtin,
A.
,
Galdrikian,
B.
, and
Farmer,
J. D.
, 1992, “
Testing for Nonlinearity in Time Series: The Method of Surrogate Data,” Phys. D,
58(1), pp. 77–94.
[CrossRef]
Machado,
J. T.
, 2012, “
Fractional Order Modeling of Fractional-Order Holds,” Nonlinear Dyn.,
70(1), pp. 789–796.
[CrossRef]
Borg,
I.
, and
Groenen,
P. J.
, 2005, “
Modeling Asymmetric Data,” Modern Multidimensional Scaling: Theory and Applications,
Springer,
New York, pp. 495–518.