0
Research Papers

Stability of Nonlinear Fractional-Order Time Varying Systems

[+] Author and Article Information
Sunhua Huang, Runfan Zhang

Institute of Water Resources and
Hydropower Research,
Northwest A&F University,
Yangling 712100, Shaanxi, China

Diyi Chen

Institute of Water Resources and
Hydropower Research,
Northwest A&F University,
Yangling 712100, Shaanxi, China
e-mail: diyichen@nwsuaf.edu.cn

1Corresponding author.

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received February 8, 2015; final manuscript received September 12, 2015; published online October 23, 2015. Assoc. Editor: Hiroshi Yabuno.

J. Comput. Nonlinear Dynam 11(3), 031007 (Oct 23, 2015) (9 pages) Paper No: CND-15-1040; doi: 10.1115/1.4031587 History: Received February 08, 2015; Revised September 12, 2015

This paper is concerned with the stability of nonlinear fractional-order time varying systems with Caputo derivative. By using Laplace transform, Mittag-Leffler function, and the Gronwall inequality, the sufficient condition that ensures local stability of fractional-order systems with fractional order α : 0<α1 and 1<α<2 is proposed, respectively. Moreover, the condition of the stability of fractional-order systems with a state-feedback controller is been put forward. Finally, a numerical example is presented to show the validity and feasibility of the proposed method.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Wang, J. R. , and Zhou, Y. , 2012, “ Mittag-Leffler–Ulam Stabilities of Fractional Evolution Equations,” Appl. Math. Lett., 25(4), pp. 723–728. [CrossRef]
Wen, X. J. , Wu, Z. M. , and Lu, J. G. , 2008, “ Stability Analysis of a Class of Nonlinear Fractional-Order Systems,” IEEE Trans. Circuits Syst. II, 55(11), pp. 1178–1182. [CrossRef]
Senol, B. , Ates, A. , Alagoz, B. B. , and Yeroglu, C. , 2014, “ A Numerical Investigation for Robust Stability of Fractional-Order Uncertain Systems,” ISA Trans., 53(2), pp. 189–198. [CrossRef] [PubMed]
Li, J. M. , and Li, Y. T. , 2013, “ Robust Stability and Stabilization of Fractional Order Systems Based on Uncertain Takagi–Sugeno Fuzzy Model With the Fractional Order 1<= v < 2,” ASME J. Comput. Nonlinear Dyn., 8(4), p. 041005. [CrossRef]
Debbouche, A. , and Torres, D. F. M. , 2014, “ Approximate Controllability of Fractional Delay Dynamic Inclusions With Nonlocal Control Conditions,” Appl. Math. Comput., 243, pp. 161–175. [CrossRef]
Zhao, L. D. , Hu, J. B. , Fang, J. A. , and Zhang, W. B. , 2012, “ Studying on the Stability of Fractional-Order Nonlinear System,” Nonlinear Dyn., 70(1), pp. 475–479. [CrossRef]
Tavazoei, M. S. , 2014, “ Toward Searching Possible Oscillatory Region in Order Space for Nonlinear Fractional-Order Systems,” ASME J. Comput. Nonlinear Dyn., 9(2), p. 021011. [CrossRef]
Gao, Z. , 2014, “ A Computing Method on Stability Intervals of Time-Delay for Fractional-Order Retarded Systems With Commensurate Time-Delays,” Automatica, 50(6), pp. 1611–1616. [CrossRef]
Jafari, H. , Tajadodi, H. , and Baleanu, D. , 2014, “ Application of a Homogeneous Balance Method to Exact Solutions of Nonlinear Fractional Evolution Equations,” ASME J. Comput. Nonlinear Dyn., 9(2), p. 021019. [CrossRef]
Lorenzo, C. F. , and Hartley, T. T. , 2015, “ Energy Considerations for Mechanical Fractional-Order Elements,” ASME J. Comput. Nonlinear Dyn., 10(1), p. 011014. [CrossRef]
Kwuimy, C. A. K. , Litak, G. , and Nataraj, C. , 2015, “ Nonlinear Analysis of Energy Harvesting Systems With Fractional Order Physical Properties,” Nonlinear Dyn., 80(1–2), pp. 491–501. [CrossRef]
Rhouma, A. , Bouani, F. , Bouzouita, B. , and Ksouri, M. , 2014, “ Model Predictive Control of Fractional Order Systems,” ASME J. Comput. Nonlinear Dyn., 9(3), p. 031011. [CrossRef]
Bagley, R. L. , and Calico, R. A. , 1991, “ Fractional Order State Equations for the Control of Viscoelastically Damped Structures,” J. Guid. Control Dyn., 14(2), pp. 304–311. [CrossRef]
Xu, Y. , Li, Y. G. , and Liu, D. , 2014, “ Response of Fractional Oscillators With Viscoelastic Term Under Random Excitation,” ASME J. Comput. Nonlinear Dyn., 9(3), p. 031015. [CrossRef]
Sun, H. H. , Abdelwahad, A. A. , and Onaral, B. , 1984, “ Linear Approximation of Transfer Function With a Pole of Fractional Order,” IEEE Trans. Autom. Control, 29(5), pp. 441–444. [CrossRef]
Ichise, M. , Nagayanagi, Y. , and Kojima, T. , 1971, “ An Analog Simulation of Noninteger Order Transfer Functions for Analysis of Electrode Process,” J. Electroanal. Chem., 33(2), pp. 253–265. [CrossRef]
Baleanu, D. , Golmankhaneh, A. K. , Golmankhaneh, A. K. , and Baleanu, M. C. , 2009, “ Fractional Electromagnetic Equations Using Fractional Forms,” Int. J. Theor. Phys., 48(11), pp. 3114–3123. [CrossRef]
Laskin, N. , 2000, “ Fractional Market Dynamics,” Physica A, 287(3–4), pp. 482–492. [CrossRef]
Lazopoulos, K. A. , 2006, “ Non-Local Continuum Mechanics and Fractional Calculus,” Mech. Res. Commun., 33(6), pp. 753–757. [CrossRef]
Sumelka, W. , and Blaszczyk, T. , 2014, “ Fractional Continua for Linear Elasticity,” Arch. Appl. Mech., 66(3), pp. 147–172.
Atanackovic, T. M. , and Stankovic, B. , 2009, “ Generalized Wave Equation in Nonlocal Elasticity,” Acta Mech., 208(1), pp. 1–10. [CrossRef]
Drapaca, C. S. , and Sivaloganathan, S. , 2012, “ A Fractional Model of Continuum Mechanics,” J. Elast., 107(2), pp. 105–123. [CrossRef]
Malgorzata, K. , 2001, “ Fractional Sequential Mechanics-Models With Symmetric Fractional Derivative,” Czech. J. Phys., 51(12), pp. 1349–1354.
Kusnezov, D. , Bulgac, A. , and Dang, G. D. , 1999, “ Quantum Levy Processes and Fractional Kinetics,” Phys. Rev. Lett., 82(6), pp. 1136–1139. [CrossRef]
Hartley, T. T. , Lorenzo, C. F. , and Qammer, H. K. , 1995, “ Chaos in a Fractional Order Chua's System,” IEEE Trans. Circuits Syst., Part I, 42(8), pp. 485–490. [CrossRef]
Dumitru, B. , Richard, L. M. , Sachin, B. , and Varsha, D. G. , 2015, “ Chaos in the Fractional Order Nonlinear Bloch Equation With Delay,” Commun. Nonlinear Sci. Numer. Simul., 25(1–3), pp. 41–49.
Chen, D. Y. , Zhao, W. L. , Liu, X. Z. , and Ma, X. Y. , 2014, “ Synchronization and Antisynchronization of a Class of Chaotic Systems With Nonidentical Orders and Uncertain Parameters,” ASME J. Comput. Nonlinear Dyn., 10(1), p. 011003. [CrossRef]
Deshmukh, V. S. , 2014, “ Computing Numerical Solutions of Delayed Fractional Differential Equations With Time Varying Coefficients,” ASME J. Comput. Nonlinear Dyn., 10(1), p. 011004. [CrossRef]
Stamova, I. , 2014, “ Global Stability of Impulsive Fractional Differential Equations,” Appl. Math. Comput., 237, pp. 605–612. [CrossRef]
Cermak, J. , Kisela, T. , and Nechvatal, L. , 2013, “ Stability Regions for Linear Fractional Differential Systems and Their Discretizations,” Appl. Math. Comput., 219(12), pp. 7012–7022. [CrossRef]
Li, C. P. , and Ma, Y. T. , 2013, “ Fractional Dynamical System and Its Linearization Theorem,” Nonlinear Dyn., 71(4), pp. 621–633. [CrossRef]
Das, S. , and Chatterjee, A. , 2013, “ Numerical Stability Analysis of Linear Incommensurate Fractional Order Systems,” ASME J. Comput. Nonlinear Dyn., 8(4), p. 041012. [CrossRef]
Dung, N. , 2014, “ Asymptotic Behavior of Linear Fractional Stochastic Differential Equations With Time-Varying Delays,” Commun. Nonlinear Sci. Numer. Simul., 19(1), pp. 1–7. [CrossRef]
Zhou, X. F. , Huang, Q. , and Jiang, W. , 2014, “ A Note on the Stability Criterion for a Class of Nonlinear Fractional Differential Systems,” Appl. Math. Lett., 31, pp. 16–17. [CrossRef]
Chen, L. P. , He, Y. G. , Chai, Y. , and Wu, R. C. , 2014, “ New Results on Stability and Stabilization of a Class of Nonlinear Fractional-Order Systems,” Nonlinear Dyn., 75(4), pp. 633–641. [CrossRef]
Li, Y. , Chen, Y. Q. , and Podlubny, I. , 2010, “ Stability of Fractional-Order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag-Leffler Stability,” Comput. Math. Appl., 59(5), pp. 1810–1821. [CrossRef]
Medved, M. , Pospisil, M. , and Skripkova, L. , 2014, “ On Exponential Stability of Nonlinear Fractional Multidelay Integro-Differential Equations Defined by Pairwise Permutable Matrices,” Appl. Math. Comput., 227, pp. 456–468. [CrossRef]
Chen, L. P. , Chai, Y. , Wu, R. C. , and Yang, J. , 2012, “ Stability and Stabilization of a Class of Nonlinear Fractional-Order Systems With Caputo Derivative,” IEEE Trans. Circuits Syst. II, 59(9), pp. 602–606. [CrossRef]
Liu, S. , Li, X. Y. , Jiang, W. , and Zhou, X. F. , 2012, “ Mittag-Leffler Stability of Nonlinear Fractional Neutral Singular Systems,” Commun. Nonlinear Sci. Numer. Simul., 17(10), pp. 3961–3966. [CrossRef]
Matignon, D. , 1996, “ Stability Results for Fractional Differential Equations With Applications to Control Processing,” Computational Engineering in Systems and Application Multiconference, IMACS, IEEE-SMC, Lille, France, Vol. 2, pp. 963–968.
Ahn, H. S. , and Chen, Y. Q. , 2008, “ Necessary and Sufficient Stability Condition of Fractional-Order Interval Linear Systems,” Automatica, 44(11), pp. 2985–2988. [CrossRef]
Lu, J. G. , and Chen, G. R. , 2009, “ Robust Stability and Stabilization of Fractional-Order Interval Systems: An LMI Approach,” IEEE Trans. Autom. Control, 54(6), pp. 1294–1299. [CrossRef]
Lu, J. G. , and Chen, Y. Q. , 2010, “ Robust Stability and Stabilization of Fractional-Order Interval Systems With the Fractional Order 0<α<1 Case,” IEEE Trans. Autom. Control, 55(1), pp. 152–158. [CrossRef]
Sabatier, J. , Moze, M. , and Farges, C. , 2012, “ LMI Stability Conditions for Fractional Order Systems,” Comput. Math. Appl., 59(5), pp. 1594–1609. [CrossRef]
Qian, D. , Li, C. , Agarwal, R. P. , and Wong, P. J. Y. , 2010, “ Stability Analysis of Fractional Differential System With Riemann–Liouville Derivative,” Math. Comput. Model., 52(5–6), pp. 862–874. [CrossRef]
Lim, Y. H. , Oh, K. K. , and Ahn, H. S. , 2013, “ Stability and Stabilization of Fractional-Order Linear Systems Subject to Input Saturation,” IEEE Trans. Autom. Control, 58(4), pp. 1062–1067. [CrossRef]
Zhang, X. F. , Liu, L. , Feng, G. , and Wang, Y. Z. , 2013, “ Asymptotical Stabilization of Fractional-Order Linear Systems in Triangular Form,” Automatica, 49(11), pp. 3315–3321. [CrossRef]
Li, Y. , Chen, Y. Q. , and Podlubny, I. , 2009, “ Mittag-Leffler Stability of Fractional Order Nonlinear Dynamic Systems,” Automatica, 45(8), pp. 1965–1969. [CrossRef]
Kim, Y. H. , 2009, “ Gronwall, Bellman and Pachpatte Type Integral Inequalities With Applications,” Nonlinear Anal., 71(12), pp. 2641–2656. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Stability domain of fractional-order system with fractional order 0 < α ≤ 1

Grahic Jump Location
Fig. 2

Stability domain of fractional-order time varying system with fractional order 1 < α < 2

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In