Samko,
S. G.
,
Kilbas,
A. A.
, and
Marichev,
O. I.
, 1987, Integrals and Derivatives of Fractional Order and Applications,
Nauka i Tehnika,
Minsk, Belarus.

Samko,
S. G.
,
Kilbas,
A. A.
, and
Marichev,
O. I.
, 1993, Fractional Integrals and Derivatives Theory and Applications,
Gordon and Breach,
New York.

Kilbas,
A. A.
,
Srivastava,
H. M.
, and
Trujillo,
J. J.
, 2003, Theory and Applications of Fractional Differential Equations,
Elsevier,
Amsterdam, The Netherlands.

Valerio,
D.
,
Trujillo,
J. J.
,
Rivero,
M.
,
Tenreiro Machado,
J. A.
, and
Baleanu,
D.
, 2013, “
Fractional Calculus: A Survey of Useful Formulas,” Eur. Phys. J.,
222(8), pp. 1827–1846.

Tenreiro Machado,
J.
,
Kiryakova,
V.
, and
Mainardi,
F.
, 2011, “
Recent History of Fractional Calculus,” Commun. Nonlinear Sci. Numer. Simul.,
16(3), pp. 1140–1153.

[CrossRef]
Tenreiro Machado,
J. A.
,
Galhano,
A. M. S. F.
, and
Trujillo,
J. J.
, 2014, “
On Development of Fractional Calculus During the Last Fifty Years,” Scientometrics,
98(1), pp. 577–582.

[CrossRef]
Tarasov,
V. E.
, 2013, “
No Violation of the Leibniz Rule. No Fractional Derivative,” Commun. Nonlinear Sci. Numer. Simul.,
18(11), pp. 2945–2948.

[CrossRef]
Liouville,
J.
, 1832, “
Memoire sur le Calcul des Differentielles a Indices Quelconques,” J. Ec. R. Polytech.,
13, pp. 71–162.

Osler,
T. J.
, 1970, “
Leibniz Rule for Fractional Derivatives Generalized and an Application to Infinite Series,” SIAM J. Appl. Math.,
18(3), pp. 658–674.

[CrossRef]
Osler,
T. J.
, 1971, “
Fractional Derivatives and Leibniz Rule,” Am. Math. Mon.,
78(6), pp. 645–649.

[CrossRef]
Osler,
T. J.
, 1972, “
A Further Extension of the Leibniz Rule to Fractional Derivatives and Its Relation to Parseval's Formula,” SIAM J. Math. Anal.,
3(1), pp. 1–16.

[CrossRef]
Osler,
T. J.
, 1973, “
A Correction to Leibniz Rule for Fractional Derivatives,” SIAM J. Math. Anal.,
4(3), pp. 456–459.

[CrossRef]
Sabatier,
J.
,
Agrawal,
O. P.
, and
Tenreiro Machado,
J. A.
, eds., 2007, Advances in Fractional Calculus. Theoretical Developments and Applications in Physics and Engineering,
Springer,
Dordrecht, The Netherlands.

Mainardi,
F.
, 2010, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models,
World Scientific,
Singapore.

Tarasov,
V. E.
, 2011, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media,
Springer,
New York.

Gambo,
Y. Y.
,
Jarad,
F.
,
Baleanu,
D.
, and
Abdeljawad,
T.
, 2014, “
On Caputo Modification of the Hadamard Fractional Derivatives,” Adv. Differ. Equations,
10, pp. 1–12.

Podlubny,
I.
, 1998, Fractional Differential Equations,
Academic Press,
San Diego, CA.

Diethelm,
K.
, 2010, The Analysis of Fractional Differential Equations,
Springer,
Berlin.

Tarasov,
V. E.
, 2015, “
Comments on ‘The Minkowski's Space–Time Is Consistent With Differential Geometry of Fractional Order,’ [Physics Letters A 363 (2007) 5–11],” Phys. Lett. A.,
379(14–15), pp. 1071–1072.

[CrossRef]
Jumarie,
G.
, 2013, “
The Leibniz Rule for Fractional Derivatives Holds With Non-Differentiable Functions,” Math. Stat.,
1(2), pp. 50–52.

Weberszpil,
J.
, 2014, “
Validity of the Fractional Leibniz Rule on a Coarse-Grained Medium Yields a Modified Fractional Chain Rule,” e-print arXiv:1405.4581.

Wang,
X.
, 2014, “
On the Leibniz Rule and Fractional Derivative for Differentiable and Non-Differentiable Functions,” e-print viXra:1404.0072.

Jumarie,
G.
, 2006, “
Modified Riemann–Liouville Derivative and Fractional Taylor Series of Non-Differentiable Functions Further Results,” Math. Comput. Appl.,
51(9–10), pp. 1367–1376.

[CrossRef]
Jumarie,
G.
, 2007, “
Lagrangian Mechanics of Fractional Order, Hamilton–Jacobi Fractional PDE and Taylor's Series of Nondifferentiable Functions,” Chaos, Solitons Fractals,
32(3), pp. 969–987.

[CrossRef]
Jumarie,
G.
, 2007, “
The Minkowski's Space–Time is Consistent With Differential Geometry of Fractional Order,” Phys. Lett. A.,
363(1–2), pp. 5–11.

[CrossRef]
Jumarie,
G.
, 2009, “
Table of Some Basic Fractional Calculus Formulae Derived From a Modified Riemann–Liouville Derivative for Nondifferentiable Functions,” Appl. Math. Lett.,
22(3), pp. 378–385.

[CrossRef]
Jumarie,
G.
, 2009, “
From Lagrangian Mechanics Fractal in Space to Space Fractal Schrodinger's Equation Via Fractional Taylor's Series,” Chaos, Solitons Fractals,
41(4), pp. 1590–1604.

[CrossRef]
Jumarie,
G.
, 2009, “
Probability Calculus of Fractional Order and Fractional Taylor's Series Application to Fokker–Planck Equation and Information of Non-Random Functions,” Chaos, Solitons Fractals,
40(3), pp. 1428–1448.

[CrossRef]
Jumarie,
G.
, 2009, “
Oscillation of Non-Linear Systems Close to Equilibrium Position in the Presence of Coarse-Graining in Time and Space,” Nonlinear Anal.,
14(2), pp. 177–197.

Jumarie,
G.
, 2010, “
An Approach Via Fractional Analysis to Non-Linearity Induced by Coarse-Graining in Space,” Nonlinear Anal.,
11(1), pp. 535–546.

[CrossRef]
Jumarie,
G.
, 2013, “
On the Derivative Chain-Rules in Fractional Calculus Via Fractional Difference and Their Application to Systems Modelling,” Cent. Eur. J. Phys.,
11(6), pp. 617–633.

Godinho,
C. F. L.
,
Weberszpil,
J.
, and
Helayel-Neto,
J. A.
, 2012, “
Extending the D'Alembert Solution to Space–Time Modified Riemann–Liouville Fractional Wave Equations,” Chaos, Solitons Fractals,
45(6), pp. 765–771.

[CrossRef]
Weberszpil,
J.
, and
Helayel-Neto,
J. A.
, 2014, “
Anomalous g-factors for Charged Leptons in a Fractional Coarse-Grained Approach,” Adv. High Energy Phys.,
2014, p. 572180.

[CrossRef]
Almeida,
R.
, and
Torres,
D. F. M.
, 2011, “
Fractional Variational Calculus for Nondifferentiable Functions,” Comput. Math. Appl.,
61(10), pp. 3097–3104.

[CrossRef]
Gomez S.,
C. A
, 2014, “
A Note on the Exact Solution for the Fractional Burgers Equation,” Int. J. Pure Appl. Math.,
93(2), pp. 229–232.

Zheng,
B.
, and
Wen,
C.
, 2013, “
Exact Solutions for Fractional Partial Differential Equations by a New Fractional Sub-Equation Method,” Adv. Differ. Equations,
199, pp. 1–12.

Kolwankar,
K. M.
, and
Gangal,
A. D.
, 1996, “
Fractional Differentiability of Nowhere Differentiable Functions and Dimensions,” Chaos,
6(4), pp. 505–513.

[CrossRef] [PubMed]
Kolwankar,
K. M.
, and
Gangal,
A. D.
, 1997, “
Holder Exponents of Irregular Signals and Local Fractional Derivatives,” Pramana,
48(1), pp. 49–68.

[CrossRef]
Kolwankar,
K. M.
, 2013, “
Local Fractional Calculus: A Review,” e-print arXiv:1307.0739.

Ben Adda,
F.
, and
Cresson,
J.
, 2001, “
About Non-Differentiable Functions,” J. Math. Anal. Appl.,
263(2), pp. 721–737.

[CrossRef]
Liu,
C.-S.
, 2015, “
Counterexamples on Jumarie's Two Basic Fractional Calculus Formulae,” Commun. Nonlinear Sci. Numer. Simul.,
22(1–3), pp. 92–94.

[CrossRef]
Tarasov,
V. E.
, 2016, “
On Chain Rule for Fractional Derivatives,” Commun. Nonlinear Sci. Numer. Simul.,
30(1–3), pp. 1–4.

[CrossRef]
Ortigueira,
M. D.
, and
Tenreiro Machado,
J. A.
, “
What is a Fractional Derivative?,” J. Comput. Phys.,
293, pp. 4–13.

[CrossRef]
Tarasov,
V. E.
, 2015, “
Local Fractional Derivatives of Differentiable Functions are Integer-Order Derivatives or Zero,” Int. J. Appl. Comput. Math. (in press).

Tarasov,
V. E.
, 2008, Quantum Mechanics of Non-Hamiltonian and Dissipative Systems,
Elsevier Science,
New York.

Ammer,
C.
, 1997, “
Throw Out the Baby With the Bath Water,” The American Heritage Dictionary of Idioms,
Houghton Mifflin Harcourt,
Boston.

Tarasov,
V. E.
, 2015, “
Comments on ‘Riemann–Christoffel Tensor in Differential Geometry of Fractional Order Application to Fractal Space–Time,’ [Fractals 21 (2013) 1350004],” Fractals,
23(2), p. 1575001.

[CrossRef]