Clark,
S. K.
, ed., 1981, “
Mechanics of Pneumatic Tires,”
NHTSA, Washington, DC, Technical Report No. US DOT HS805 952.

Lee,
C. R.
,
Kim,
J. W.
,
Hallquist,
J. O.
,
Zhang,
Y.
, and
Farahani,
A. D.
, 1997, “
Validation of a FEA Tire Model for Vehicle Dynamic Analysis and Full Vehicle Real Time Proving Ground Simulations,” SAE Technical Paper No. 971100.

Koishi,
M.
,
Kabe,
K.
, and
Shiratori,
M.
, 1998, “
Tire Cornering Simulation Using an Explicit Finite Element Analysis Code,” Tire Sci. Technol.,
26(2), pp. 109–119.

[CrossRef]
Gruber,
P.
,
Sharp,
R. S.
, and
Crocombe,
A. D.
, 2012, “
Normal and Shear Forces in the Contact Patch of a Braked Racing Tyre—Part 1: Results From a Finite-Element Model,” Veh. Syst. Dyn.,
50(2), pp. 323–337.

[CrossRef]
Tanner,
J. A.
, 1996, “
Computational Methods for Frictional Contact With Applications to the Space Shuttle Orbiter Nose-Gear Tire,” NASA Technical Report No. 3573, pp. 1–52.

Gipser,
M.
, 2005, “
FTire: A Physically Based Application-Oriented Tyre Model for Use With Detailed MBS and Finite-Element Suspension Models,” Veh. Syst. Dyn.,
43(Suppl. 1), pp. 76–91.

[CrossRef]
Gallrein,
A.
, and
Baecker,
M.
, 2007, “
CDTire: A Tire Model for Comfort and Durability Applications,” Veh. Syst. Dyn.,
45(Suppl. 1), pp. 69–77.

[CrossRef]
Oertel,
C.
, and
Fandre,
A.
, 1999, “
Ride Comfort Simulations and Step Towards Life Time Calculations: RMOD-K and ADAMS,” International ADAMS Conference, Berlin, Germany, pp. 1–17.

Roller,
M.
,
Betsch,
P.
,
Gallrein,
A.
, and
Linn,
J.
, 2014, “
On the Use of Geometrically Exact Shells for Dynamic Tyre Simulation,” Multibody Dynamics, Computational Methods in Applied Sciences, Vol.
35,
Z. Terze
, ed.,
Springer-Verlag,
New York, pp. 205–236.

Roller,
M.
,
Betsch,
P.
,
Gallrein,
A.
, and
Linn,
J.
, 2015, “
An Enhanced Tire Model for Dynamic Simulation Based on Geometrically Exact Shells,” ECCOMAS Thematic Conference on Multibody Dynamics, Barcelona, Spain, June 29–July 2, pp. 1260–1271.

Yamashita,
H.
,
Matsutani,
Y.
, and
Sugiyama,
H.
, 2015, “
Longitudinal Tire Dynamics Model for Transient Braking Analysis: ANCF-LuGre Tire Model,” ASME J. Comput. Nonlinear Dyn.,
10(3), p. 031003.

[CrossRef]
Sugiyama,
H.
,
Yamashita,
H.
, and
Jayakumar,
P.
, 2014, “
Right on Tracks—An Integrated Tire Model for Ground Vehicle Simulation,” Tire Technol. Int.,
67, pp. 52–55.

Sugiyama,
H.
, and
Suda,
Y.
, 2009, “
Nonlinear Elastic Ring Tyre Model Using the Absolute Nodal Coordinate Formulation,” Proc. Inst. Mech. Eng., Part K,
223(3), pp. 211–219.

Shabana,
A. A.
, 2005, Dynamics of Multibody Systems,
Cambridge University Press,
New York.

Gerstmayr,
J.
,
Sugiyama,
H.
, and
Mikkola,
A.
, 2013, “
Review on the Absolute Nodal Coordinate Formulation for Large Deformation Analysis of Multibody Systems,” ASME J. Comput. Nonlinear Dyn.,
8(3), p. 031016.

[CrossRef]
Hauptmann,
R.
,
Doll,
S.
,
Harnau,
M.
, and
Schweizerhof,
K.
, 1998, “
A Systematic Development of ‘Solid-Shell’ Element Formulations for Linear and Non-Linear Analyses Employing Only Displacement Degrees of Freedom,” Int. J. Numer. Methods Eng.,
42(1), pp. 49–69.

[CrossRef]
Hauptmann,
R.
,
Doll,
S.
,
Harnau,
M.
, and
Schweizerhof,
K.
, 2001, “
Solid-Shell Elements With Linear and Quadratic Shape Functions at Large Deformations With Nearly Incompressible Materials,” Comput. Struct.,
79(18), pp. 1671–1685.

[CrossRef]
Vu-Quoc,
L.
, and
Tan,
X. G.
, 2003, “
Optimal Solid Shells for Non-Linear Analyses of Multilayer Composites: I Statics,” Comput. Methods Appl. Mech. Eng.,
192(9–10), pp. 975–1016.

[CrossRef]
Vu-Quoc,
L.
, and
Tan,
X. G.
, 2003, “
Optimal Solid Shells for Nonlinear Analyses of Multilayer Composites—Part II: Dynamics,” Comput. Methods Appl. Mech. Eng.,
192(9–10), pp. 1017–1059.

[CrossRef]
Simo,
J. C.
,
Rifai,
M. S.
, and
Fox,
D. D.
, 1990, “
On a Stress Resultant Geometrically Exact Shell Model—Part IV: Variable Thickness Shells With Through-the-Thickness Stretching,” Int. J. Numer. Methods Eng.,
81(1), pp. 91–126.

Betsch,
P.
, and
Stein,
E.
, 1995, “
An Assumed Strain Approach Avoiding Artificial Thickness Straining for a Non-Linear 4-Node Shell Element,” Commun. Numer. Methods Eng.,
11(11), pp. 899–909.

[CrossRef]
Betsch,
P.
, and
Stein,
E.
, 1996, “
A Nonlinear Extensible 4-Node Shell Element Based on Continuum Theory and Assumed Strain Interpolations,” J. Nonlinear Sci.,
6(2), pp. 169–199.

[CrossRef]
Sugiyama,
H.
,
Escalona,
J. L.
, and
Shabana,
A. A.
, 2003, “
Formulation of Three-Dimensional Joint Constraints Using the Absolute Nodal Coordinates,” Nonlinear Dyn.,
31(2), pp. 167–195.

[CrossRef]
Sugiyama,
H.
, and
Yamashita,
H.
, 2011, “
Spatial Joint Constraints for the Absolute Nodal Coordinate Formulation Using the Non-Generalized Intermediate Coordinates,” Multibody Syst. Dyn.,
26(1), pp. 15–36.

[CrossRef]
Kim,
S.
,
Nikravesh,
P. E.
, and
Gim,
G.
, 2008, “
A Two-Dimensional Tire Model on Uneven Roads for Vehicle Dynamic Simulation,” Veh. Syst. Dyn.,
46(10), pp. 913–930.

[CrossRef]
Shabana,
A. A.
, and
Yakoub,
R. Y.
, 2001, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory,” ASME J. Mech. Des.,
123(4), pp. 606–613.

[CrossRef]
Mikkola,
A. M.
, and
Shabana,
A. A.
, 2003, “
A Non-Incremental Finite Element Procedure for the Analysis of Large Deformation of Plates and Shells in Mechanical System Applications,” Multibody Syst. Dyn.,
9(3), pp. 283–309.

[CrossRef]
Romero,
I.
, 2008, “
A Comparison of Finite Elements for Nonlinear Beams: The Absolute Nodal Coordinate and Geometrically Exact Formulations,” Multibody Syst. Dyn.,
20(1), pp. 51–68.

[CrossRef]
Bauchau,
O. A.
,
Han,
S. L.
,
Mikkola,
A.
,
Matikainen,
M. K.
, and
Gruber,
P.
, 2015, “
Experimental Validation of Flexible Multibody Dynamics Beam Formulations,” Multibody Syst. Dyn.,
34(4), pp. 373–389.

[CrossRef]
Kerkkänen,
K. S.
,
Sopanen,
J. T.
, and
Mikkola,
A. M.
, 2005, “
A Linear Beam Finite Element Based on the Absolute Nodal Coordinate Formulation,” ASME J. Mech. Des.,
127(4), pp. 621–630.

[CrossRef]
Garcia-Vallejo,
D.
,
Mikkola,
A. M.
, and
Escalona,
J. L.
, 2007, “
A New Locking-Free Shear Deformable Finite Element Based on Absolute Nodal Coordinates,” Nonlinear Dyn.,
50(1), pp. 249–264.

[CrossRef]
Nachbagauer,
K.
,
Pechstein,
S. A.
,
Irschik,
H.
, and
Gerstmayr,
J.
, 2011, “
A New Locking Free Formulation for Planar, Shear Deformable, Linear and Quadratic Beam Finite Elements Based on the Absolute Nodal Coordinate Formulation,” Multibody Syst. Dyn.,
26(3), pp. 245–263.

[CrossRef]
Nachbagauer,
K.
,
Gruber,
P.
, and
Gerstmayr,
J.
, 2013, “
Structural and Continuum Mechanics Approaches for a 3D Shear Deformable ANCF Beam Finite Element: Application to Static and Linearized Dynamic Examples,” ASME J. Comput. Nonlinear Dyn.,
8(2), p. 021004.

[CrossRef]
Nachbagauer,
K.
, and
Gerstmayr,
J.
, 2014, “
Structural and Continuum Mechanics Approaches for a 3D Shear Deformable ANCF Beam Finite Element: Application to Buckling and Nonlinear Dynamic Examples,” ASME J. Comput. Nonlinear Dyn.,
9(1), p. 011013.

Dmitrochenko,
O.
,
Matikainen,
M.
, and
Mikkola,
A.
, 2012, “
The Simplest 3-and 4-Noded Fully Parameterized ANCF Plate Elements,” ASME Paper No. DETC2012-70524.

Olshevskiy,
A.
,
Dmitrochenko,
O.
,
Dai,
M. D.
, and
Kim,
C.-W.
, 2015, “
The Simplest 3-, 6- and 8-Noded Fully-Parameterized ANCF Plate Elements Using Only Transverse Slopes,” Multibody Syst. Dyn.,
34(1), pp. 23–51.

[CrossRef]
Yamashita,
H.
,
Valkeapää,
A.
,
Jayakumar,
P.
, and
Sugiyama,
H.
, 2015, “
Continuum Mechanics Based Bi-Linear Shear Deformable Shell Element Using Absolute Nodal Coordinate Formulation,” ASME J. Comput. Nonlinear Dyn.,
10(5), p. 051012.

[CrossRef]
Valkeapää,
A.
,
Yamashita,
H.
,
Jayakumar,
P.
, and
Sugiyama,
H.
, 2015, “
On the Use of Elastic Middle Surface Approach in the Large Deformation Analysis of Moderately Thick Shell Structures Using Absolute Nodal Coordinate Formulation,” Nonlinear Dyn.,
80(3), pp. 1133–1146.

[CrossRef]
Dvorkin,
E. N.
, and
Bathe,
K. J.
, 1984, “
A Continuum Mechanics Based Four-Node Shell Element for General Non-Linear Analysis,” Eng. Comput.,
1(1), pp. 77–88.

[CrossRef]
Bathe,
K. J.
, and
Dvorkin,
E. N.
, 1985, “
A Four-Node Plate Bending Element Based on Mindlin/Reissner Plate Theory and a Mixed Interpolation,” Int. J. Numer. Methods Eng.,
21(2), pp. 367–383.

[CrossRef]
Simo,
J. C.
, and
Rifai,
M. S.
, 1990, “
A Class of Mixed Assumed Strain Methods and the Method of Incompatible Modes,” Int. J. Numer. Methods Eng.,
29(8), pp. 1595–1638.

[CrossRef]
Andelfinger,
U.
, and
Ramm,
E.
, 1993, “
EAS-Elements for Two-Dimensional, Three-Dimensional, Plate and Shell Structures and Their Equivalence to HR-Elements,” Int. J. Numer. Methods Eng.,
36(8), pp. 1311–1337.

[CrossRef]
Jones,
R. M.
, 1999, Mechanics of Composite Materials,
Taylor and Francis,
New York.

Noor,
A. K.
, and
Burton,
W. S.
, 1989, “
Assessment of Shear Deformation Theories for Multilayered Composite Plates,” ASME Appl. Mech. Rev.,
42(1), pp. 1–13.

[CrossRef]
Noor,
A. K.
, and
Burton,
W. S.
, 1990, “
Assessment of Computational Models for Multilayered Composite Shells,” ASME Appl. Mech. Rev.,
43(4), pp. 67–97.

[CrossRef]
Canudas-de-Wit,
C.
,
Tsiotras,
P.
,
Velenis,
E.
,
Basset,
M.
, and
Gissinger,
G.
, 2003, “
Dynamic Friction Models for Road/Tire Longitudinal Interaction,” Veh. Syst. Dyn.,
39(3), pp. 189–226.

[CrossRef]
Deur,
J.
,
Asgari,
J.
, and
Hrovat,
D.
, 2004, “
A 3D Brush-Type Dynamic Tire Friction Model,” Veh. Syst. Dyn.,
42(3), pp. 133–173.

[CrossRef]
Bathe,
K. J.
, 1996, Finite Element Procedures,
Prentice Hall,
Englewood Cliffs, NJ.

Hilber,
H. M.
,
Hughes,
T. J. R.
, and
Taylor,
R. L.
, 1977, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics,” Earthquake Eng. Struct. Dyn.,
5(3), pp. 265–284.

[CrossRef]