0
Research Papers

A Linear Matrix Inequality Approach to Output Feedback Control of Fractional-Order Unified Chaotic Systems With One Control Input

[+] Author and Article Information
Pitcha Khamsuwan

Department of Mechanical and
Aerospace Engineering,
Faculty of Engineering,
King Mongkut's University of
Technology North Bangkok,
Bangkok 10800, Thailand

Suwat Kuntanapreeda

Department of Mechanical and
Aerospace Engineering,
Faculty of Engineering,
King Mongkut's University of
Technology North Bangkok,
Bangkok 10800, Thailand
e-mails: suwat@kmutnb.ac.th;
suwatkd@gmail.com

1Corresponding author.

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received November 12, 2015; final manuscript received April 5, 2016; published online May 24, 2016. Assoc. Editor: Dumitru Baleanu.

J. Comput. Nonlinear Dynam 11(5), 051021 (May 24, 2016) (7 pages) Paper No: CND-15-1368; doi: 10.1115/1.4033384 History: Received November 12, 2015; Revised April 05, 2016

This paper focuses on stabilization of fractional-order unified chaotic systems. In contrast to existing methods in literature, the proposed method requires only the system output for feedback and uses only one control input. The controller consists of a state feedback control law and a dynamic estimator. Sufficient stability conditions are derived using a fractional-order extension of the Lyapunov direct method and a new lemma of the Caputo fractional derivative. The conditions are expressed in the form of linear matrix inequalities (LMIs). All the parameters of the controller can be simultaneously obtained by solving the LMIs. Numerical simulations are provided to illustrate the feasibility and effectiveness of the proposed method.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Podlubny, I. , 1999, Fractional Differential Equations, Academic Press, San Diego, CA.
Monje, C. A. , Chen, Y. Q. , Vinagre, B. M. , Xue, D. , and Feliu, V. , 2010, Fractional-Order Systems and Controls: Fundamentals and Applications, Springer-Verlag, London.
Petras, I. , 2011, Fractional-Order Nonlinear Systems, Springer-Verlag, Berlin.
Atıcı, F. M. , and Şengül, S. , 2010, “ Modeling With Fractional Difference Equations,” J. Math. Anal. Appl., 369(1), pp. 1–9. [CrossRef]
Wu, F. , and Liu, J.-F. , 2016, “ Discrete Fractional Creep Model of Salt Rock,” J. Comput. Complex. Appl., 2(1), pp. 1–6.
Wu, G.-C. , and Baleanu, D. , 2014, “ Discrete Fractional Logistic Map and Its Chaos,” Nonlinear Dyn., 75(1), pp. 283–287. [CrossRef]
Ge, Z.-M. , and Ou, C.-Y. , 2007, “ Chaos in a Fractional Order Modified Duffing System,” Chaos, Solitons Fractals, 34(2), pp. 262–291. [CrossRef]
Wu, X. , Li, J. , and Chen, G. , 2008, “ Chaos in the Fractional Order Unified System and Its Synchronization,” J. Franklin Inst., 345(4), pp. 392–401. [CrossRef]
Deng, W. , and Li, C. , 2008, “ The Evolution of Chaotic Dynamics for Fractional Unified System,” Phys. Lett. A, 372(4), pp. 401–407. [CrossRef]
Golmankhaneh, A. K. , Arefi, R. , and Baleanu, D. , 2013, “ The Proposed Modified Liu System With Fractional Order,” Adv. Math. Phys., 2013, p. 186037. [CrossRef]
Ding, Y. , Wang, Z. , and Ye, H. , 2012, “ Optimal Control of a Fractional-Order HIV-Immune System With Memory,” IEEE Trans. Control Syst. Technol., 20(3), pp. 763–769. [CrossRef]
Rhouma, A. , and Bouani, F. , 2014, “ Robust Model Predictive Control of Uncertain Fractional Systems: A Thermal Application,” IET Control Theory Appl., 8(17), pp. 1986–1994. [CrossRef]
Wei, Y. , Chen, Y. , Liang, S. , and Wang, Y. , 2015, “ A Novel Algorithm on Adaptive Backstepping Control of Fractional Order Systems,” Neurocomputing, 165, pp. 395–402. [CrossRef]
Peng, C. , and Chen, C. , 2008, “ Robust Chaotic Control of Lorenz System by Backstepping Design,” Chaos, Solitons Fractals, 37(2), pp. 598–608. [CrossRef]
Sangpet, T. , and Kuntanapreeda, S. , 2010, “ Output Feedback Control of Unified Chaotic Systems Based on Feedback Passivity,” Int. J. Bifurcation Chaos, 20(5), pp. 1519–1525. [CrossRef]
Chen, G. , 2011, “ A Simple Adaptive Feedback Control Method for Chaos and Hyper-Chaos Control,” Appl. Math. Comput., 217(17), pp. 7258–7264.
Kuntanapreeda, S. , and Sangpet, T. , 2012, “ Synchronization of Chaotic Systems With Unknown Parameters Using Adaptive Passivity-Based Control,” J. Franklin Inst., 349(8), pp. 2547–2569. [CrossRef]
Chadli, M. , and Zelinka, I. , 2014, “ Chaos Synchronization of Unknown Inputs Takagi–Sugeno Fuzzy: Application to Secure Communications,” Comput. Math. Appl., 68(12), pp. 2142–2147. [CrossRef]
Ott, E. , Grebogi, C. , and Yorke, J. A. , 1990, “ Controlling Chaos,” Phys. Rev. Lett. 64(11), pp. 1196–1199. [CrossRef] [PubMed]
Hartly, T. T. , Lorenzo, C. F. , and Qammer, H. K. , 1995, “ Chaos in a Fractional Order Chua's System,” IEEE Trans. Circuit. Syst. I, 42(8), pp. 485–490. [CrossRef]
Hegazi, A. S. , Ahmed, E. , and Matouk, A. E. , 2013, “ On Chaos Control and Synchronization of the Commensurate Fractional Order Liu System,” Commun. Nonlinear Sci. Numer. Simul., 18(5), pp. 1193–1202. [CrossRef]
Faieghi, M. R. , Delavari, H. , and Baleanu, D. , 2013, “ A Note on Stability of Sliding Mode Dynamic in Suppression of Fractional-Order Chaotic Systems,” Comput. Math. Appl., 66(5), pp. 832–837. [CrossRef]
Aghababa, M. P. , 2014, “ Control of Fractional-Order Using Chatter-Free Sliding Mode Approach,” ASME J. Comput. Nonlinear Dyn., 9(3), p. 031003. [CrossRef]
Faieghi, M. R. , Kuntanapreeda, S. , Delavari, H. , and Baleanu, D. , 2014, “ Robust Stabilization of Fractional-Order Chaotic Systems With Linear Controllers: LMI-Based Sufficient Conditions,” J. Vib. Control, 20(7), pp. 1042–1051. [CrossRef]
Wang, B. , Xue, J. , and Chen, D. , 2014, “ Takagi–Sugeno Fuzzy Control for a Wide Class of Fractional-Order Chaotic Systems With Uncertain Parameters Via Linear Matrix Inequality,” J. Vib. Control, 2014, pp. 1–14.
Kuntanapreeda, S. , 2015, “ Tensor Product Model Transformation Based Control and Synchronization of a Class of Fractional-Order Chaotic Systems,” Asian J. Control, 17(2), pp. 371–380. [CrossRef]
Li, R. , and Li, W. , 2015, “ Suppressing Chaos for a Class of Fractional-Order Chaotic Systems by Adaptive Integer-Order and Fractional-Order Feedback Control,” Optik, 126(21), pp. 2965–2973. [CrossRef]
Danca, M.-F. , and Garrappa, R. , 2015, “ Suppressing Chaos in Discontinuous Systems of Fractional Order by Active Control,” Appl. Math. Comput., 257, pp. 89–102.
Golmankhaneh, A. K. , Arefi, R. , and Baleanu, D. , 2015, “ Synchronization in a Nonidentical Fractional Order of a Proposed Modified System,” J. Vib. Control, 216(6), pp. 1154–1161. [CrossRef]
Wu, G.-C. , and Baleanu, D. , 2014, “ Chaos Synchronization of Discrete Fractional Logistic Map,” Signal Process., 102, pp. 96–99. [CrossRef]
Li, Y. , Chen, Y. , and Podlubny, I. , 2009, “ Mittag–Leffler Stability of Fractional Order Nonlinear Dynamic Systems,” Automatica, 45(2), pp. 1965–1969. [CrossRef]
Li, Y. , Chen, Y. , and Podlubny, I. , 2010, “ Stability of Fractional-Order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag Leffler Stability,” Comput. Math. Appl., 59(5), pp. 1810–1821. [CrossRef]
Tarasov, V. E. , 2013, “ No Violation of the Leibniz Rule. No Fractional Derivative,” Commun. Nonlinear Sci. Numer. Simul., 18(11), pp. 2945–2948. [CrossRef]
Aguila-Camacho, N. , Duarte-Mermoud, M. A. , and Gallegos, J. A. , 2014, “ Lyapunov Functions for Fractional Order Systems,” Commun. Nonlinear Sci. Numer. Simul., 19(9), pp. 2951–2957. [CrossRef]
Duarte-Mermoud, M. A. , Aguila-Camacho, N. , Gallegos, J. A. , and Castro-Linares, R. , 2015 “ Using General Quadratic Lyapunov Function to Prove Lyapunov Uniform Stability for Fractional Order Systems,” Commun. Nonlinear Sci. Numer. Simul., 22(1–3), pp. 650–659. [CrossRef]
Keshtkar, F. , Erjaee, G. H. , and Kheiri, H. , 2016, “ On Global Stability of Nonlinear Fractional Dynamical Systems,” J. Comput. Complex. Appl., 2(1), pp. 16–23.
Chen, F. , and Liu, Z. , 2012, “ Asymptotic Stability Results for Nonlinear Fractional Difference Equations,” J. Appl. Math., 2012, p. 879657.
Abu-Saris, R. , and Al-Mdallal, Q. , 2013, “ On the Asymptotic Stability of Linear System of Fractional-Order Difference Equations,” Frac. Calc. Appl. Anal. 16(3), pp. 613–629.
Chen, F.-L. , 2015, “ A Review of Existence and Stability Results for Discrete Fractional Equations,” J. Comput. Complex. Appl., 1(1), pp. 22–53.
Zhang, X. , Khadra, A. , Yang, D. , and Li, D. , 2010, “ Unified Impulsive Fuzzy-Model-Based Controllers for Chaotic Systems With Parameter Uncertainties Via LMI,” Commun. Nonlinear Sci. Numer. Simul., 15(1), pp. 105–114. [CrossRef]
Mobayen, S. , 2015, “ An LMI-Based Robust Controller Design Using Global Nonlinear Sliding Surfaces and Application to Chaotic Systems,” Nonlinear Dyn., 79(2), pp. 1075–1084. [CrossRef]
Diethelm, K. , Ford, N. J. , and Freed, A. D. , 2002, “ Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations,” Nonlinear Dyn., 29(1), pp. 3–22. [CrossRef]
Diethelm, K. , Ford, N. J. , and Freed, A. D. , 2004, “ Detailed Error Analysis for a Fractional Adams Method,” Numer. Algorithms, 36(1), pp. 31–52. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Uncontrolled fractional-order Lorenz system (α=0 and q=0.98). The initial condition x(0)=[1, 2, 3]T. (a) State response and (b) chaotic attractor.

Grahic Jump Location
Fig. 2

Uncontrolled fractional-order Chen system (α=1 and q=0.80). The initial condition x(0)=[1, 2, 3]T. (a) State response and (b) chaotic attractor.

Grahic Jump Location
Fig. 3

Uncontrolled fractional-order Lü system (α=0.8 and q=0.90). The initial condition x(0)=[1, 2, 3]T. (a) State response and (b) chaotic attractor.

Grahic Jump Location
Fig. 4

Response of the controlled fractional-order Lorenz system

Grahic Jump Location
Fig. 5

Phase-space trajectory of the controlled fractional-order Lorenz system

Grahic Jump Location
Fig. 6

Estimation errors and control input of the controlled fractional-order Lorenz systems

Grahic Jump Location
Fig. 7

Response of the controlled fractional-order Chen system

Grahic Jump Location
Fig. 8

Phase-space trajectory of the controlled fractional-order Chen system

Grahic Jump Location
Fig. 9

Estimation errors and control input of the controlled fractional-order Chen systems

Grahic Jump Location
Fig. 10

Response of the controlled fractional-order Lü system

Grahic Jump Location
Fig. 11

Phase-space trajectory of the controlled fractional-order Lü system

Grahic Jump Location
Fig. 12

Estimation errors and control input of the controlled fractional-order Lü systems

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In