Podlubny,
I.
, 1999, Fractional Differential Equations,
Academic Press,
San Diego, CA.

Monje,
C. A.
,
Chen,
Y. Q.
,
Vinagre,
B. M.
,
Xue,
D.
, and
Feliu,
V.
, 2010, Fractional-Order Systems and Controls: Fundamentals and Applications,
Springer-Verlag,
London.

Petras,
I.
, 2011, Fractional-Order Nonlinear Systems,
Springer-Verlag,
Berlin.

Atıcı,
F. M.
, and
Şengül,
S.
, 2010, “
Modeling With Fractional Difference Equations,” J. Math. Anal. Appl.,
369(1), pp. 1–9.

[CrossRef]
Wu,
F.
, and
Liu,
J.-F.
, 2016, “
Discrete Fractional Creep Model of Salt Rock,” J. Comput. Complex. Appl.,
2(1), pp. 1–6.

Wu,
G.-C.
, and
Baleanu,
D.
, 2014, “
Discrete Fractional Logistic Map and Its Chaos,” Nonlinear Dyn.,
75(1), pp. 283–287.

[CrossRef]
Ge,
Z.-M.
, and
Ou,
C.-Y.
, 2007, “
Chaos in a Fractional Order Modified Duffing System,” Chaos, Solitons Fractals,
34(2), pp. 262–291.

[CrossRef]
Wu,
X.
,
Li,
J.
, and
Chen,
G.
, 2008, “
Chaos in the Fractional Order Unified System and Its Synchronization,” J. Franklin Inst.,
345(4), pp. 392–401.

[CrossRef]
Deng,
W.
, and
Li,
C.
, 2008, “
The Evolution of Chaotic Dynamics for Fractional Unified System,” Phys. Lett. A,
372(4), pp. 401–407.

[CrossRef]
Golmankhaneh,
A. K.
,
Arefi,
R.
, and
Baleanu,
D.
, 2013, “
The Proposed Modified Liu System With Fractional Order,” Adv. Math. Phys.,
2013, p. 186037.

[CrossRef]
Ding,
Y.
,
Wang,
Z.
, and
Ye,
H.
, 2012, “
Optimal Control of a Fractional-Order HIV-Immune System With Memory,” IEEE Trans. Control Syst. Technol.,
20(3), pp. 763–769.

[CrossRef]
Rhouma,
A.
, and
Bouani,
F.
, 2014, “
Robust Model Predictive Control of Uncertain Fractional Systems: A Thermal Application,” IET Control Theory Appl.,
8(17), pp. 1986–1994.

[CrossRef]
Wei,
Y.
,
Chen,
Y.
,
Liang,
S.
, and
Wang,
Y.
, 2015, “
A Novel Algorithm on Adaptive Backstepping Control of Fractional Order Systems,” Neurocomputing,
165, pp. 395–402.

[CrossRef]
Peng,
C.
, and
Chen,
C.
, 2008, “
Robust Chaotic Control of Lorenz System by Backstepping Design,” Chaos, Solitons Fractals,
37(2), pp. 598–608.

[CrossRef]
Sangpet,
T.
, and
Kuntanapreeda,
S.
, 2010, “
Output Feedback Control of Unified Chaotic Systems Based on Feedback Passivity,” Int. J. Bifurcation Chaos,
20(5), pp. 1519–1525.

[CrossRef]
Chen,
G.
, 2011, “
A Simple Adaptive Feedback Control Method for Chaos and Hyper-Chaos Control,” Appl. Math. Comput.,
217(17), pp. 7258–7264.

Kuntanapreeda,
S.
, and
Sangpet,
T.
, 2012, “
Synchronization of Chaotic Systems With Unknown Parameters Using Adaptive Passivity-Based Control,” J. Franklin Inst.,
349(8), pp. 2547–2569.

[CrossRef]
Chadli,
M.
, and
Zelinka,
I.
, 2014, “
Chaos Synchronization of Unknown Inputs Takagi–Sugeno Fuzzy: Application to Secure Communications,” Comput. Math. Appl.,
68(12), pp. 2142–2147.

[CrossRef]
Ott,
E.
,
Grebogi,
C.
, and
Yorke,
J. A.
, 1990, “
Controlling Chaos,” Phys. Rev. Lett.
64(11), pp. 1196–1199.

[CrossRef] [PubMed]
Hartly,
T. T.
,
Lorenzo,
C. F.
, and
Qammer,
H. K.
, 1995, “
Chaos in a Fractional Order Chua's System,” IEEE Trans. Circuit. Syst. I,
42(8), pp. 485–490.

[CrossRef]
Hegazi,
A. S.
,
Ahmed,
E.
, and
Matouk,
A. E.
, 2013, “
On Chaos Control and Synchronization of the Commensurate Fractional Order Liu System,” Commun. Nonlinear Sci. Numer. Simul.,
18(5), pp. 1193–1202.

[CrossRef]
Faieghi,
M. R.
,
Delavari,
H.
, and
Baleanu,
D.
, 2013, “
A Note on Stability of Sliding Mode Dynamic in Suppression of Fractional-Order Chaotic Systems,” Comput. Math. Appl.,
66(5), pp. 832–837.

[CrossRef]
Aghababa,
M. P.
, 2014, “
Control of Fractional-Order Using Chatter-Free Sliding Mode Approach,” ASME J. Comput. Nonlinear Dyn.,
9(3), p. 031003.

[CrossRef]
Faieghi,
M. R.
,
Kuntanapreeda,
S.
,
Delavari,
H.
, and
Baleanu,
D.
, 2014, “
Robust Stabilization of Fractional-Order Chaotic Systems With Linear Controllers: LMI-Based Sufficient Conditions,” J. Vib. Control,
20(7), pp. 1042–1051.

[CrossRef]
Wang,
B.
,
Xue,
J.
, and
Chen,
D.
, 2014, “
Takagi–Sugeno Fuzzy Control for a Wide Class of Fractional-Order Chaotic Systems With Uncertain Parameters Via Linear Matrix Inequality,” J. Vib. Control,
2014, pp. 1–14.

Kuntanapreeda,
S.
, 2015, “
Tensor Product Model Transformation Based Control and Synchronization of a Class of Fractional-Order Chaotic Systems,” Asian J. Control,
17(2), pp. 371–380.

[CrossRef]
Li,
R.
, and
Li,
W.
, 2015, “
Suppressing Chaos for a Class of Fractional-Order Chaotic Systems by Adaptive Integer-Order and Fractional-Order Feedback Control,” Optik,
126(21), pp. 2965–2973.

[CrossRef]
Danca,
M.-F.
, and
Garrappa,
R.
, 2015, “
Suppressing Chaos in Discontinuous Systems of Fractional Order by Active Control,” Appl. Math. Comput.,
257, pp. 89–102.

Golmankhaneh,
A. K.
,
Arefi,
R.
, and
Baleanu,
D.
, 2015, “
Synchronization in a Nonidentical Fractional Order of a Proposed Modified System,” J. Vib. Control,
216(6), pp. 1154–1161.

[CrossRef]
Wu,
G.-C.
, and
Baleanu,
D.
, 2014, “
Chaos Synchronization of Discrete Fractional Logistic Map,” Signal Process.,
102, pp. 96–99.

[CrossRef]
Li,
Y.
,
Chen,
Y.
, and
Podlubny,
I.
, 2009, “
Mittag–Leffler Stability of Fractional Order Nonlinear Dynamic Systems,” Automatica,
45(2), pp. 1965–1969.

[CrossRef]
Li,
Y.
,
Chen,
Y.
, and
Podlubny,
I.
, 2010, “
Stability of Fractional-Order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag Leffler Stability,” Comput. Math. Appl.,
59(5), pp. 1810–1821.

[CrossRef]
Tarasov,
V. E.
, 2013, “
No Violation of the Leibniz Rule. No Fractional Derivative,” Commun. Nonlinear Sci. Numer. Simul.,
18(11), pp. 2945–2948.

[CrossRef]
Aguila-Camacho,
N.
,
Duarte-Mermoud,
M. A.
, and
Gallegos,
J. A.
, 2014, “
Lyapunov Functions for Fractional Order Systems,” Commun. Nonlinear Sci. Numer. Simul.,
19(9), pp. 2951–2957.

[CrossRef]
Duarte-Mermoud,
M. A.
,
Aguila-Camacho,
N.
,
Gallegos,
J. A.
, and
Castro-Linares,
R.
, 2015 “
Using General Quadratic Lyapunov Function to Prove Lyapunov Uniform Stability for Fractional Order Systems,” Commun. Nonlinear Sci. Numer. Simul.,
22(1–3), pp. 650–659.

[CrossRef]
Keshtkar,
F.
,
Erjaee,
G. H.
, and
Kheiri,
H.
, 2016, “
On Global Stability of Nonlinear Fractional Dynamical Systems,” J. Comput. Complex. Appl.,
2(1), pp. 16–23.

Chen,
F.
, and
Liu,
Z.
, 2012, “
Asymptotic Stability Results for Nonlinear Fractional Difference Equations,” J. Appl. Math.,
2012, p. 879657.

Abu-Saris,
R.
, and
Al-Mdallal,
Q.
, 2013, “
On the Asymptotic Stability of Linear System of Fractional-Order Difference Equations,” Frac. Calc. Appl. Anal.
16(3), pp. 613–629.

Chen,
F.-L.
, 2015, “
A Review of Existence and Stability Results for Discrete Fractional Equations,” J. Comput. Complex. Appl.,
1(1), pp. 22–53.

Zhang,
X.
,
Khadra,
A.
,
Yang,
D.
, and
Li,
D.
, 2010, “
Unified Impulsive Fuzzy-Model-Based Controllers for Chaotic Systems With Parameter Uncertainties Via LMI,” Commun. Nonlinear Sci. Numer. Simul.,
15(1), pp. 105–114.

[CrossRef]
Mobayen,
S.
, 2015, “
An LMI-Based Robust Controller Design Using Global Nonlinear Sliding Surfaces and Application to Chaotic Systems,” Nonlinear Dyn.,
79(2), pp. 1075–1084.

[CrossRef]
Diethelm,
K.
,
Ford,
N. J.
, and
Freed,
A. D.
, 2002, “
Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations,” Nonlinear Dyn.,
29(1), pp. 3–22.

[CrossRef]
Diethelm,
K.
,
Ford,
N. J.
, and
Freed,
A. D.
, 2004, “
Detailed Error Analysis for a Fractional Adams Method,” Numer. Algorithms,
36(1), pp. 31–52.

[CrossRef]