Seireg,
A. A.
, 1998, Friction and Lubrication in Mechanical Design,
Marcel Dekker,
New York.

Ding,
Q.
, and
Zhai,
H. M.
, 2013, “
The Advance in Researches of Friction Dynamics in Mechanic System,” Adv. Mech.,
43(1), pp. 112–131.

Berger,
E. J.
, 2002, “
Friction Modeling for Dynamic System Simulation,” ASME Appl. Mech. Rev.,
55(6), pp. 535–577.

[CrossRef]
Awrejcewicz,
J.
, and
Olejnik,
P.
, 2005, “
Analysis of Dynamic Systems With Various Friction Laws,” ASME Appl. Mech. Rev.,
58(1–6), pp. 389–410.

[CrossRef]
Hartog,
J. P. D.
, 1931, “
Forced Vibrations With Combined Coulomb and Viscous Friction,” Trans. ASME,
53(9), pp. 107–115.

Awrejcewicz,
J.
, and
Delfs,
J.
, 1990, “
Dynamics of a Self-Excited Stick-Slip Oscillator With Two Degrees of Freedom—Part I: Investigation of Equilibria,” Eur. J. Mech., A: Solids,
9(4), pp. 269–282.

Awrejcewicz,
J.
, and
Delfs,
J.
, 1990, “
Dynamics of a Self-Excited Stick-Slip Oscillator With Two Degrees of Freedom—Part II: Slip-Stick, Slip-Slip, Stick-Slip Transitions, Periodic and Chaotic Orbits,” Eur. J. Mech., A: Solids,
9(5), pp. 397–418.

Awrejcewicz,
J.
, 1990, “
Parametric and Self-Excited Vibrations Induced by Friction in a System With Three Degrees of Freedom,” KSME J.,
4(2), pp. 156–166.

Thomsen,
J. J.
, 1999, “
Using Fast Vibrations to Quench Friction-Induced Oscillations,” J. Sound Vib.,
228(5), pp. 1079–1102.

[CrossRef]
Thomsen,
J. J.
, and
Fidlin,
A.
, 2003, “
Analytical Approximations for Stick-Slip Vibration Amplitudes,” Int. J. Non-Linear Mech.,
38(3), pp. 389–403.

[CrossRef]
Liu,
X. J.
,
Wang,
D. J.
, and
Chen,
Y. S.
, 1998, “
Approximate Analytical Solution of the Self-Excited Vibration of Piecewise-Smooth Systems Induced by Dry Friction,” Acta Mech. Sin.,
14(1), pp. 78–84.

[CrossRef]
Saha,
A.
, and
Wahi,
P.
, 2014, “
An Analytical Study of Time-Delayed Control of Friction-Induced Vibrations in a System With a Dynamic Friction Model,” Int. J. Non-Linear Mech.,
63, pp. 60–70.

[CrossRef]
Cheng,
G.
, and
Zu,
J. W.
, 2004, “
Dynamics of a Dry Friction Oscillator Under Two-Frequency Excitations,” J. Sound Vib.,
275(3–5), pp. 591–603.

[CrossRef]
Petras,
I.
, 2011, Fractional-Order Nonlinear Systems,
Higher Education Press,
Beijing.

Podlubny,
I.
, 1999, Fractional Differential Equations, Mathematics in Science and Engineering,
Academic Press,
New York.

Shen,
Y. J.
,
Wei,
P.
, and
Yang,
S. P.
, 2014, “
Primary Resonance of Fractional-Order Van der Pol Oscillator,” Nonlinear Dyn.,
77(4), pp. 1629–1642.

[CrossRef]
Rossikhin,
Y. A.
, and
Shitikova,
M. V.
, 1997, “
Application of Fractional Derivatives to the Analysis of Damped Vibrations of Viscoelastic Single Mass Systems,” Acta Mech.,
120(1–4), pp. 109–125.

[CrossRef]
Yang,
S. P.
, and
Shen,
Y. J.
, 2009, “
Recent Advances in Dynamics and Control of Hysteretic Nonlinear Systems,” Chaos, Solitons Fractals,
40(4), pp. 1808–1822.

[CrossRef]
Li,
C. P.
, and
Deng,
W. H.
, 2007, “
Remarks on Fractional Derivatives,” Appl. Math. Comput.,
187(1), pp. 777–784.

Cao,
J. X.
,
Ding,
H. F.
, and
Li,
C. P.
, 2013, “
Implicit Difference Schemes for Fractional Diffusion Equations,” Commun. Appl. Math. Comput.,
27(1), pp. 61–74.

Li,
X. H.
, and
Hou,
J. Y.
, 2016, “
Bursting Phenomenon in a Piecewise Mechanical System With Parameter Perturbation in Stiffness,” Int. J. Non-Linear Mech.,
81, pp. 165–176.

[CrossRef]
Li,
X. H.
,
Hou,
J. Y.
, and
Chen,
J. F.
, 2016, “
An Analytical Method for Mathieu Oscillator Based on Method of Variation of Parameter,” Commun. Nonlinear Sci. Numer. Simul.,
37, pp. 326–353.

[CrossRef]
Chen,
J. H.
, and
Chen,
W. C.
, 2008, “
Chaotic Dynamics of the Fractionally Damped Van der Pol Equation,” Chaos, Solitons Fractals,
35(1), pp. 188–198.

[CrossRef]
Song,
C.
,
Cao,
J. D.
, and
Liu,
Y. Z.
, 2015, “
Robust Consensus of Fractional-Order Multi-Agent Systems With Positive Real Uncertainty Via Second-Order Neighbors Information,” Neurocomputing,
165, pp. 293–299.

[CrossRef]
Chen,
L. C.
,
Zhao,
L.
,
Li,
W.
, and
Zhao,
J.
, 2016, “
Bifurcation Control of Bounded Noise Excited Duffing Oscillator by a Weakly Fractional-Order PID Feedback Controller,” Nonlinear Dyn.,
83(1), pp. 529–539.

[CrossRef]
Zeng,
Q. S.
,
Silva,
D.
, and
Larence,
W.
, 2012, “
The Application of Fractional Order Control in an Industrial Fish Processing Machine,” Control Intell. Syst.,
40(3), pp. 177–185.

Podlubny,
I.
, 1999, “
Fractional-Order Systems and PI

^{λ}D

^{μ}–Controllers,” IEEE Trans. Autom. Control,
44(1), pp. 208–214.

[CrossRef]
Zeng,
G. Q.
,
Chen,
J.
,
Dai,
Y. X.
,
Li,
L. M.
,
Zheng,
C. W.
, and
Chen,
M. R.
, 2015, “
Design of Fractional Order PID Controller for Automatic Regulator Voltage System Based on Multi-Objective Extremal Optimization,” Neurocomputing,
160, pp. 173–184.

[CrossRef]
Zhong,
J. P.
, and
Li,
L. C.
, 2015, “
Tuning Fractional-Order (PID mu)-D-Lambda Controllers for a Solid-Core Magnetic Bearing System,” IEEE Trans. Control Syst. Technol.,
23(4), pp. 1648–1656.

[CrossRef]
Chen,
Y. Q.
,
Petras,
I.
, and
Xue,
D. Y.
, 2009, “
Fractional Order Control—A Tutorial,” 2009 Conference on American Control Conference. St. Louis, MO, June 10–12, IEEE Press, pp. 1397–1411.

Saidi,
B.
,
Amairi,
M.
,
Najar,
S.
, and
Aoun,
M.
, 2015, “
Bode Shaping-Based Design Methods of a Fractional Order PID Controller for Uncertain Systems,” Nonlinear Dyn.,
80(4), pp. 1817–1838.

[CrossRef]
Chen,
L. C.
, and
Zhu,
W. Q.
, 2011, “
Stochastic Jump and Bifurcation of Duffing Oscillator With Fractional Derivative Damping Under Combined Harmonic and White Noise Excitations,” Int. J. Non-Linear Mech.,
46(10), pp. 1324–1329.

[CrossRef]
Chen,
L. C.
,
Li,
Z. S.
,
Zhuang,
Q. J.
, and
Zhu,
W. Q.
, 2013, “
First-Passage Failure of Single-Degree-of-Freedom Nonlinear Oscillators With Fractional Derivative,” J. Vib. Control,
19(14), pp. 2154–2163.

[CrossRef]
Wang,
Z.
, and
Zheng,
Y. G.
, 2009, “
The Optimal Form of the Fractional-Order Difference Feedbacks in Enhancing the Stability of a SDOF Vibration System,” J. Sound Vib.,
326(3–5), pp. 476–488.

[CrossRef]
Chen,
Y. Q.
,
Bhaskaran,
T.
, and
Xue,
D. Y.
, 2008, “
Practical Tuning Rule Development for Fractional Order Proportional and Integral Controllers,” ASME J. Comput. Nonlinear Dyn.,
3(2), p. 021403.

Basiri,
M. H.
, and
Tavazoei,
M. S.
, 2015, “
On Robust Control of Fractional Order Plants: Invariant Phase Margin,” ASME J. Comput. Nonlinear Dyn.,
10(5), p. 054504.

Awrejcewicz,
J.
, 2014, Ordinary Differential Equations and Mechanical Systems,
Springer International Publishing, Cham,
Switzerland.

Awrejcewicz,
J.
, and
Krodkiewski,
J.
, 1983, “
Analysis of Self-Excited Vibrations Due to Nonlinear Friction in a System with Two Degrees of Freedom System,” Sci. Bull. Lodz Tech. Univ.,
68, pp. 21–28.

Awrejcewicz,
J.
, 1987, “
Analysis of Self-Excited Vibration in Mechanical System With Four Degrees of Freedom,” Sci. Bull. Lodz Tech. Univ.,
72, pp. 5–27.

Awrejcewicz,
J.
, and
Holicke,
M.
, 2006, “
Analytical Prediction of Stick-Slip Chaos in a Double Self-Excited Duffing-Type Oscillator,” Math. Probl. Eng.,
2006, p. 70245.

Awrejcewicz,
J.
, and
Holicke,
M. M.
, 1999, “
Melnikov's Method and Stick-Slip Chaotic Oscillations in Very Weekly Forced Mechanical Systems,” Int. J. Bifurcation Chaos,
9(3), pp. 505–518.

[CrossRef]
Kluge,
P. N. V.
,
Germaine,
D. K.
, and
Crepin,
K. T.
, 2015, “
Dry Friction With Various Frictions Laws: From Wave Modulated Orbit to Stick-Slip Modulated,” Mod. Mech. Eng.,
5(02), pp. 28–40.

[CrossRef]
Shen,
Y. J.
,
Yang,
S. P.
,
Xing,
H. J.
, and
Gao,
G. S.
, 2012, “
Primary Resonance of Duffing Oscillator With Fractional-Order Derivative,” Commun. Nonlinear Sci. Numer. Simul.,
17(7), pp. 3092–3100.

[CrossRef]
Shen,
Y. J.
,
Yang,
S. P.
, and
Sui,
C. Y.
, 2014, “
Analysis on Limit Cycle of Fractional-Order Van der Pol Oscillator,” Chaos, Solitons Fractals,
67(10), pp. 94–102.

[CrossRef]