Trinkle,
J.
, 2003, “
Formulation of Multibody Dynamics as Complementarity Problems,” ASME Paper No. DETC2003/VIB-48342.

Todorov,
E.
,
Erez,
T.
, and
Tassa,
Y.
, 2012, “
Mujoco: A Physics Engine for Model-Based Control,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vilamoura, Portugal, Oct. 7–12, pp. 5026–5033.

Jain,
A.
, 2014, “
Contact Dynamics Formulation Using Minimal Coordinates,” Multibody Dynamics,
Springer International Publishing,
Switzerland, pp. 93–121.

[PubMed] [PubMed]
Anitescu,
M.
, and
Potra,
F. A.
, 1997, “
Formulating Dynamic Multi-Rigid-Body Contact Problems With Friction as Solvable Linear Complementarity Problems,” Nonlinear Dyn.,
14(3), pp. 231–247.

[CrossRef]
Murty,
K. G.
, 1988, Linear Complementarity, Linear and Nonlinear Programming,
Heldermann,
Berlin.

Tasora,
A.
, and
Anitescu,
M.
, 2009, “
A Fast NCP Solver for Large Rigid-Body Problems With Contacts, Friction, and Joints,” Multibody Dynamics,
Springer, The Netherlands, pp. 45–55.

Dirkse,
S.
,
Ferris,
M.
, and
Munson,
T.
, 2013, “The PATH Solver,”

Todorov,
E.
, 2010, “
Implicit Nonlinear Complementarity: A New Approach to Contact Dynamics,” IEEE International Conference on Robotics and Automation (ICRA), Anchorage, AK, May 3–7, pp. 2322–2329.

Kanzow,
C.
, and
Petra,
S.
, 2004, “
On a Semismooth Least Squares Formulation of Complementarity Problems With Gap Reduction,” Optim. Methods Software,
19(5), pp. 507–525.

[CrossRef]
Kanzow,
C.
, and
Petra,
S.
, 2005, “LMMCP: A Levenberg–Maquardt Type matlab Solver for Mixed Complementarity Problems.”

Kanzow,
C.
, and
Petra,
S.
, 2005, “
Projected Filter Trust Region Methods for a Semismooth Least Squares Formulation of Mixed Complementarity Problems,” Optim. Methods Software,
22(5), pp. 713–735.

[CrossRef]
Trinkle,
J. C.
,
Pang,
J.-S.
,
Sudarsky,
S.
, and
Lo,
G.
, 1997, “
On Dynamic Multi-Rigid-Body Contact Problems With Coulomb Friction,” Z. Angew. Math. Mech.,
77(4), pp. 267–279.

[CrossRef]
Jain,
A.
, 2011, Robot and Multibody Dynamics: Analysis and Algorithms,
Springer, New York.

Jain,
A.
,
Crean,
C.
,
Kuo,
C.
,
Von Bremen,
H.
, and
Myint,
S.
, 2012, “
Minimal Coordinate Formulation of Contact Dynamics in Operational Space,” Robotics: Science and Systems,
MIT Press, Robotics: Science and Systems, Sydney, Australia, July.

Lacoursiere,
C.
,
Lu,
Y.
,
Williams,
J.
, and
Trinkle,
J.
, 2013, “
Standard Interface for Data Analysis of Solvers in Multibody Dynamics,” 4th Canadian Conference on Nonlinear Solid Mechanics (CanCNSM 2013), Montreal, QC, Canada, July 23–26, Vol.
8, Paper No. 814.

Glocker,
C.
, 2013, “
Simulation of Hard Contacts With Friction: An Iterative Projection Method,” Recent Trends in Dynamical Systems,
Springer, Basel, Switzerland, pp. 493–515.

Chen,
B.
,
Chen,
X.
, and
Kanzow,
C.
, 2000, “
A Penalized Fischer–Burmeister NCP-Function,” Math. Program.,
88(1), pp. 211–216.

[CrossRef]
Negrut,
D.
,
Tasora,
A.
,
Mazhar,
H.
,
Heyn,
T.
, and
Hahn,
P.
, 2012, “
Leveraging Parallel Computing in Multibody Dynamics,” Multibody Syst. Dyn.,
27(1), pp. 95–117.

[CrossRef]
Marquardt,
D. W.
, 1963, “
An Algorithm for Least-Squares Estimation of Nonlinear Parameters,” J. Soc. Ind. Appl. Math.,
11(2), pp. 431–441.

[CrossRef]
Bazaraa,
M. S.
,
Sherali,
H.
, and
Shetty,
C.
, 1993, Nonlinear Programming: Theory and Algorithms,
Wiley,
Hoboken, NJ.

Mylapilli,
H.
, and
Jain,
A.
, 2014, “
Evaluation of Complementarity Techniques for Minimal Coordinate Contact Dynamics,” ASME Paper No. DETC2014-34322.

Jain,
A.
, 2014, “
Operational Space Inertia for Closed-Chain Robotic Systems,” ASME J. Comput. Nonlinear Dyn.,
9(2), p. 021015.

[CrossRef]
Geiger,
C.
, and
Kanzow,
C.
, 1996, “
On the Resolution of Monotone Complementarity Problems,” Comput. Optim. Appl.,
5(2), pp. 155–173.

[CrossRef]
Studer,
C. W.
, 2008, “
Augmented Time-Stepping Integration of Non-Smooth Dynamical Systems,” Ph.D. thesis, ETH, Zürich, Switzerland.

Sun,
D.
, and
Qi,
L.
, 1999, “
On NCP-Functions,” Comput. Optim. Appl.,
13(1–3), pp. 201–220.

[CrossRef]
Fischer,
A.
, 1995, “
A Newton-Type Method for Positive-Semidefinite Linear Complementarity Problems,” J. Optim. Theory Appl.,
86(3), pp. 585–608.

[CrossRef]
Ferris,
M. C.
,
Kanzow,
C.
, and
Munson,
T. S.
, 1999, “
Feasible Descent Algorithms for Mixed Complementarity Problems,” Math. Program.,
86(3), pp. 475–497.

[CrossRef]
Jain,
A.
,
Crean,
C.
,
Kuo,
C.
, and
Quadrelli,
M. B.
, 2012, “
Efficient Constraint Modeling for Closed-Chain Dynamics,” 2nd Joint International Conference on Multibody System Dynamics, Stuttgart, Germany, May 29–June 1.

Schindler,
T.
, and
Acary,
V.
, 2014, “
Timestepping Schemes for Nonsmooth Dynamics Based on Discontinuous Galerkin Methods: Definition and Outlook,” Math. Comput. Simul.,
95, pp. 180–199.

[CrossRef]
Schoeder,
S.
,
Ulbrich,
H.
, and
Schindler,
T.
, 2014, “
Discussion of the Gear–Gupta–Leimkuhler Method for Impacting Mechanical Systems,” Multibody Syst. Dyn.,
31(4), pp. 477–495.

[CrossRef]
Drumwright,
E.
, and
Shell,
D. A.
, 2009, “
A Robust and Tractable Contact Model for Dynamic Robotic Simulation,” ACM Symposium on Applied Computing, Honolulu, HI, Mar. 8–12, pp. 1176–1180.

Boyd,
S. P.
, and
Vandenberghe,
L.
, 2004, Convex Optimization,
Cambridge University Press,
New York.

Grippo,
L.
,
Lampariello,
F.
, and
Lucidi,
S.
, 1986, “
A Nonmonotone Line Search Technique for Newton's Method,” SIAM J. Numer. Anal.,
23(4), pp. 707–716.

[CrossRef]
Grippo,
L.
,
Lampariello,
F.
, and
Lucidi,
S.
, 1991, “
A Class of Nonmonotone Stabilization Methods in Unconstrained Optimization,” Numer. Math.,
59(1), pp. 779–805.

[CrossRef]
Coumans,
E.
, 2013, “Bullet Physics Library.”