Metzler,
R.
, and
Klafter,
J.
, 2000, “
The Random Walk's Guide to Anomalous Diffusion: A Fractional Dynamics Approach,” Phys. Rep.,
339(1), pp. 1–77.

[CrossRef]
Schiessel,
H.
,
Metzler,
R.
,
Blumen,
A.
, and
Nonnenmacher,
T. F.
, 1995, “
Generalized Viscoelastic Models: Their Fractional Equations With Solutions,” J. Phys. A: Math. Gen.,
28(23), pp. 6567–6584.

[CrossRef]
Vinagre,
B. M.
,
Podlubny,
I.
,
Hernandez,
A.
, and
Feliu,
V.
, 2000, “
Some Approximations of Fractional Order Operators Used in Control Theory and Applications,” Fractional Calculus Appl. Anal.,
3(3), pp. 231–248.

Magin,
R. L.
, 2004, “
Fractional Calculus in Bioengineering, Part 1,” Crit. Rev. Biomed. Eng.,
32(1), pp. 1–140.

[CrossRef] [PubMed]
Hilfer,
R.
, 2000, Applications of Fractional Calculus in Physics,
World Scientific Publishing,
Hackensack, NJ.

Gorenflo,
R.
,
Mainardi,
F.
,
Scalas,
E.
, and
Raberto,
M.
, 2001, “
Fractional Calculus and Continuous-Time Finance, III: The Diffusion Limit,” Mathematical Finance (Trends in Mathematics),
Birkhäuser,
Basel, Switzerland, pp. 171–180.

Diaz,
G.
, and
Coimbra,
C. F. M.
, 2009, “
Nonlinear Dynamics and Control of a Variable Order Oscillator With Application to the van der Pol Equation,” Nonlinear Dyn.,
56(1–2), pp. 145–157.

[CrossRef]
L'Espérance,
D.
,
Coimbra,
C. F.
,
Trolinger,
J. D.
, and
Rangel,
R. H.
, 2005, “
Experimental Verification of Fractional History Effects on the Viscous Dynamics of Small Spherical Particles,” Exp. Fluids,
38(1), pp. 112–116.

[CrossRef]
Coimbra,
C. F.
,
L'Espérance,
D.
,
Lambert,
A.
,
Trolinger,
J. D.
, and
Rangel,
R. H.
, 2006, “
An Experimental Study on the History Effects in High-Frequency Stokes Flows,” J. Fluid Mech.,
564, pp. 361–393.

[CrossRef]
Kim,
M.
, and
O,
H
.
-C
.
, 2014, “
Explicit Representation of Green's Function for Linear Fractional Differential Operator With Variable Coefficients,” J. Fractional Calculus Appl.,
5(1), pp. 26–36.

Gupta,
S.
,
Kumar,
D.
, and
Singh,
J.
, 2015, “
Numerical Study for Systems of Fractional Differential Equations Via Laplace Transform,” J. Egypt. Math. Soc.,
23(2), pp. 256–262.

[CrossRef]
Butera,
S.
, and
Paola,
M.
, 2015, “
Mellin Transform Approach for the Solution of Coupled Systems of Fractional Differential Equations,” Commun. Nonlinear Sci. Numer. Simul.,
20(1), pp. 32–38.

[CrossRef]
Podlubny,
I.
, 1999, Fractional Differential Equations (
Mathematics in Science and Engineering, Vol.
198),
Academic Press,
San Diego, CA.

Bhrawy,
A. H.
, 2016, “
A New Spectral Algorithm for Time-Space Fractional Partial Differential Equations With Subdiffusion and Superdiffusion,” Proc. Rom. Acad., Ser. A,
17, pp. 39–47.

Wu,
G. C.
,
Baleanu,
D.
,
Zeng,
S. D.
, and
Deng,
Z. G.
, 2015, “
Discrete Fractional Diffusion Equation,” Nonlinear Dyn.,
80, pp. 281–286.

[CrossRef]
Wu,
G. C.
,
Baleanu,
D.
,
Xie,
H. P.
, and
Zeng,
S. D.
, 2015, “
Discrete Fractional Diffusion Equation of Chaotic Order,” Int. J. Bifurcation Chaos,
24, p. 1650013.

Dehghan,
M.
,
Abbaszadeh,
M.
, and
Mohebbi,
A.
, 2016, “
Analysis of a Meshless Method for the Time Fractional Diffusion-Wave Equation,” Numer. Algorithms.

Bhrawy,
A. H.
,
Taha,
T. M.
, and
Machado,
J. A. T
.
, 2015, “
A Review of Operational Matrices and Spectral Techniques for Fractional Calculus,” Nonlinear Dyn.,
81(3), pp. 1023–1052.

[CrossRef]
Bhrawy,
A. H.
, and
Zaky,
M. A.
, 2015, “
Numerical Simulation for Two-Dimensional Variable-Order Fractional Nonlinear Cable Equation,” Nonlinear Dyn.,
80(1), pp. 101–116.

[CrossRef]
Bhrawy,
A. H.
, 2016, “
A Jacobi Spectral Collocation Method for Solving Multi-Dimensional Nonlinear Fractional Sub-Diffusion Equations,” Numerical Algorithms.

Wang,
Y. M.
, 2015, “
A Compact Finite Difference Method for a Class of Time Fractional Convection-Diffusion-Wave Equations With Variable Coefficients,” Numer. Algorithms,
70(3), pp. 625–651.

[CrossRef]
Ma,
J.
,
Liu,
J.
, and
Zhou,
Z.
, 2014, “
Convergence Analysis of Moving Finite Element Methods for Space Fractional Differential Equations,” J. Comput. Appl. Math.,
255(1), pp. 661–670.

[CrossRef]
Garg,
M.
, and
Manohar,
P.
, 2014, “
Matrix Method for Numerical Solution of Space-Time Fractional Diffusion-Wave Equations With Three Space Variables,” Afr. Mat.,
25(1), pp. 161–181.

[CrossRef]
Bhrawy,
A. H.
,
Zaky,
M. A.
, and
Gorder,
R. A. V
.
, 2016, “
A Space-Time Legendre Spectral Tau Method for the Two-Sided Space-Time Caputo Fractional Diffusion-Wave Equation,” Numer. Algorithms,
71(1), pp. 151–180.

[CrossRef]
Pedas,
A.
, and
Tamme,
E.
, 2014, “
Numerical Solution of Nonlinear Fractional Differential Equations by Spline Collocation Methods,” J. Comput. Appl. Math.,
255(1), pp. 216–230.

[CrossRef]
Bhrawy,
A. H.
,
Doha,
E. H.
,
Ezz-Eldien,
S. S.
, and
Abdelkawy,
M. A.
, 2016, “
A Numerical Technique Based on the Shifted Legendre Polynomials for Solving the Time-Fractional Coupled KdV Equation,” Calcolo,
53(1), pp. 1–17.

[CrossRef]
Baleanu,
D.
,
Golmankhaneh,
A. K.
, and
Golmankhaneh,
A. K.
, 2009, “
Solving of the Fractional Non-Linear and Linear Schrodinger Equations by Homotopy Perturbation Method,” Rom. J. Phys.,
54(10), pp. 823–832.

Bhrawy,
A. H.
, and
Alofi,
A. S.
, 2013, “
The Operational Matrix of Fractional Integration for Shifted Chebyshev Polynomials,” Appl. Math. Lett.,
26(1), pp. 25–31.

[CrossRef]
Bhrawy,
A. H.
, and
Ezz-Eldien,
S. S.
, 2016, “
A New Legendre Operational Technique for Delay Fractional Optimal Control Problems,” Calcolo (published online).

Abdelkawy,
M. A.
,
Ezz-Eldien,
S. S.
, and
Amin,
A. Z. M
.
, 2015, “
Jacobi Spectral Collocation Scheme for Solving Abel's Integral Equations,” Prog. Fractional Differ. Appl.,
1(3), pp. 1–14.

Samko,
S. G.
, and
Ross,
B.
, 1993, “
Integration and Differentiation to a Variable Fractional Order,” Integr. Transforms Spec. Funct.,
1(4), pp. 277–300.

[CrossRef]
Samko,
S
.
, 2013, “
Fractional Integration and Differentiation of Variable Order: An Overview,” Nonlinear Dyn.,
71(4), pp. 653–662.

[CrossRef]
Valerio,
D.
, and
Sa da Costa,
J.
, 2013, “
Variable Order Fractional Controllers,” Asian J. Control,
15(3), pp. 648–657.

[CrossRef]
Soon,
C. M.
,
Coimbra,
C. F. M
.
, and
Kobayashi,
M. H.
, 2005, “
The Variable Viscoelasticity Oscillator,” Ann. Phys.,
14(6), pp. 378–389.

[CrossRef]
Gerasimov,
D. N.
,
Kondratieva,
V. A.
, and
Sinkevich,
O. A.
, 2010, “
An Anomalous Non-Self-Similar Infiltration and Fractional Diffusion Equation,” Physica D,
239(16), pp. 1593–1597.

[CrossRef]
Chen,
W.
,
Zhang,
J.
, and
Zhang,
J.
, 2013, “
A Variable-Order Time-Fractional Derivative Model for Chloride Ions Sub-Diffusion in Concrete Structures,” Fractional Calculus Appl. Anal.,
16(1), pp. 76–92.

Shen,
S.
,
Liu,
F.
,
Anh,
V.
,
Turner,
I.
, and
Chen,
J.
, 2013, “
A Characteristic Difference Method for the Variable-Order Fractional Advection-Diffusion Equation,” J. Appl. Math. Comput.,
42(1–2), pp. 371–386.

[CrossRef]
Zhao,
X.
,
Sun,
Z.-z.
, and
Karniadakis,
G. E.
, 2015, “
Second-Order Approximations for Variable Order Fractional Derivatives: Algorithms and Applications,” J. Comput. Phys.,
293, pp. 184–200.

[CrossRef]
Abdelkawy,
M. A.
,
Zaky,
M. A.
,
Bhrawy,
A. H.
, and
Baleanu,
D.
, 2015, “
Numerical Simulation of Time Variable Fractional Order Mobile-Immobile Advection-Dispersion Model,” Rom. Rep. Phys.,
67(3), pp. 773–791.

Sun,
H.
,
Chen,
W.
,
Li,
C.
, and
Chen,
Y.
, 2012, “
Finite Difference Schemes for Variable-Order Time Fractional Diffusion Equation,” Int. J. Bifurcation Chaos,
22(4), p. 1250085.

[CrossRef]
Fu,
Z. J.
,
Chen,
W.
, and
Ling,
L.
, 2015, “
Method of Approximate Particular Solutions for Constant- and Variable-Order Fractional Diffusion Models,” Eng. Anal. Boundary Elem.,
57(8), pp. 37–46.

[CrossRef]