0
Research Papers

An Efficient Operational Matrix Technique for Multidimensional Variable-Order Time Fractional Diffusion Equations

[+] Author and Article Information
M. A. Zaky

Department of Applied Mathematics,
National Research Centre,
Dokki,
Giza 12622, Egypt;
Zewail City of Science and Technology,
University of Science and Technology,
Zayed City,
Giza 12588, Egypt
e-mail: ma.zaky@yahoo.com

S. S. Ezz-Eldien

Department of Mathematics,
Faculty of Science,
Assiut University,
New Valley Branch,
El-Kharja 72511, Egypt
e-mail: s_sezeldien@yahoo.com

E. H. Doha

Department of Mathematics,
Faculty of Science,
Cairo University,
Giza 12613, Egypt
e-mail: eiddoha@eun.eg

J. A. Tenreiro Machado

Department of Electrical Engineering,
Institute of Engineering,
Polytechnic of Porto,
Rua Dr. Antonio Bernardino de Almeida,
Porto 431 4249-015, Portugal
e-mail: jtenreiromachado@gmail.com

A. H. Bhrawy

Department of Mathematics,
Faculty of Science,
Beni-Suef University,
Beni-Suef 62511, Egypt
e-mail: alibhrawy@yahoo.co.uk

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received November 20, 2015; final manuscript received April 3, 2016; published online June 20, 2016. Assoc. Editor: Dumitru Baleanu.

J. Comput. Nonlinear Dynam 11(6), 061002 (Jun 20, 2016) (8 pages) Paper No: CND-15-1388; doi: 10.1115/1.4033723 History: Received November 20, 2015; Revised April 03, 2016

This paper derives a new operational matrix of the variable-order (VO) time fractional partial derivative involved in anomalous diffusion for shifted Chebyshev polynomials. We then develop an accurate numerical algorithm to solve the 1 + 1 and 2 + 1 VO and constant-order fractional diffusion equation with Dirichlet conditions. The contraction of the present method is based on shifted Chebyshev collocation procedure in combination with the derived shifted Chebyshev operational matrix. The main advantage of the proposed method is to investigate a global approximation for spatial and temporal discretizations, and it reduces such problems to those of solving a system of algebraic equations, which greatly simplifies the solution process. In addition, we analyze the convergence of the present method graphically. Finally, comparisons between the algorithm derived in this paper and the existing algorithms are given, which show that our numerical schemes exhibit better performances than the existing ones.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.

References

Metzler, R. , and Klafter, J. , 2000, “ The Random Walk's Guide to Anomalous Diffusion: A Fractional Dynamics Approach,” Phys. Rep., 339(1), pp. 1–77. [CrossRef]
Schiessel, H. , Metzler, R. , Blumen, A. , and Nonnenmacher, T. F. , 1995, “ Generalized Viscoelastic Models: Their Fractional Equations With Solutions,” J. Phys. A: Math. Gen., 28(23), pp. 6567–6584. [CrossRef]
Vinagre, B. M. , Podlubny, I. , Hernandez, A. , and Feliu, V. , 2000, “ Some Approximations of Fractional Order Operators Used in Control Theory and Applications,” Fractional Calculus Appl. Anal., 3(3), pp. 231–248.
Magin, R. L. , 2004, “ Fractional Calculus in Bioengineering, Part 1,” Crit. Rev. Biomed. Eng., 32(1), pp. 1–140. [CrossRef] [PubMed]
Hilfer, R. , 2000, Applications of Fractional Calculus in Physics, World Scientific Publishing, Hackensack, NJ.
Gorenflo, R. , Mainardi, F. , Scalas, E. , and Raberto, M. , 2001, “ Fractional Calculus and Continuous-Time Finance, III: The Diffusion Limit,” Mathematical Finance (Trends in Mathematics), Birkhäuser, Basel, Switzerland, pp. 171–180.
Diaz, G. , and Coimbra, C. F. M. , 2009, “ Nonlinear Dynamics and Control of a Variable Order Oscillator With Application to the van der Pol Equation,” Nonlinear Dyn., 56(1–2), pp. 145–157. [CrossRef]
L'Espérance, D. , Coimbra, C. F. , Trolinger, J. D. , and Rangel, R. H. , 2005, “ Experimental Verification of Fractional History Effects on the Viscous Dynamics of Small Spherical Particles,” Exp. Fluids, 38(1), pp. 112–116. [CrossRef]
Coimbra, C. F. , L'Espérance, D. , Lambert, A. , Trolinger, J. D. , and Rangel, R. H. , 2006, “ An Experimental Study on the History Effects in High-Frequency Stokes Flows,” J. Fluid Mech., 564, pp. 361–393. [CrossRef]
Kim, M. , and O, H . -C . , 2014, “ Explicit Representation of Green's Function for Linear Fractional Differential Operator With Variable Coefficients,” J. Fractional Calculus Appl., 5(1), pp. 26–36.
Gupta, S. , Kumar, D. , and Singh, J. , 2015, “ Numerical Study for Systems of Fractional Differential Equations Via Laplace Transform,” J. Egypt. Math. Soc., 23(2), pp. 256–262. [CrossRef]
Butera, S. , and Paola, M. , 2015, “ Mellin Transform Approach for the Solution of Coupled Systems of Fractional Differential Equations,” Commun. Nonlinear Sci. Numer. Simul., 20(1), pp. 32–38. [CrossRef]
Podlubny, I. , 1999, Fractional Differential Equations ( Mathematics in Science and Engineering, Vol. 198), Academic Press, San Diego, CA.
Bhrawy, A. H. , 2016, “ A New Spectral Algorithm for Time-Space Fractional Partial Differential Equations With Subdiffusion and Superdiffusion,” Proc. Rom. Acad., Ser. A, 17, pp. 39–47.
Wu, G. C. , Baleanu, D. , Zeng, S. D. , and Deng, Z. G. , 2015, “ Discrete Fractional Diffusion Equation,” Nonlinear Dyn., 80, pp. 281–286. [CrossRef]
Wu, G. C. , Baleanu, D. , Xie, H. P. , and Zeng, S. D. , 2015, “ Discrete Fractional Diffusion Equation of Chaotic Order,” Int. J. Bifurcation Chaos, 24, p. 1650013.
Dehghan, M. , Abbaszadeh, M. , and Mohebbi, A. , 2016, “ Analysis of a Meshless Method for the Time Fractional Diffusion-Wave Equation,” Numer. Algorithms.
Bhrawy, A. H. , Taha, T. M. , and Machado, J. A. T . , 2015, “ A Review of Operational Matrices and Spectral Techniques for Fractional Calculus,” Nonlinear Dyn., 81(3), pp. 1023–1052. [CrossRef]
Bhrawy, A. H. , and Zaky, M. A. , 2015, “ Numerical Simulation for Two-Dimensional Variable-Order Fractional Nonlinear Cable Equation,” Nonlinear Dyn., 80(1), pp. 101–116. [CrossRef]
Bhrawy, A. H. , 2016, “ A Jacobi Spectral Collocation Method for Solving Multi-Dimensional Nonlinear Fractional Sub-Diffusion Equations,” Numerical Algorithms.
Wang, Y. M. , 2015, “ A Compact Finite Difference Method for a Class of Time Fractional Convection-Diffusion-Wave Equations With Variable Coefficients,” Numer. Algorithms, 70(3), pp. 625–651. [CrossRef]
Ma, J. , Liu, J. , and Zhou, Z. , 2014, “ Convergence Analysis of Moving Finite Element Methods for Space Fractional Differential Equations,” J. Comput. Appl. Math., 255(1), pp. 661–670. [CrossRef]
Garg, M. , and Manohar, P. , 2014, “ Matrix Method for Numerical Solution of Space-Time Fractional Diffusion-Wave Equations With Three Space Variables,” Afr. Mat., 25(1), pp. 161–181. [CrossRef]
Bhrawy, A. H. , Zaky, M. A. , and Gorder, R. A. V . , 2016, “ A Space-Time Legendre Spectral Tau Method for the Two-Sided Space-Time Caputo Fractional Diffusion-Wave Equation,” Numer. Algorithms, 71(1), pp. 151–180. [CrossRef]
Pedas, A. , and Tamme, E. , 2014, “ Numerical Solution of Nonlinear Fractional Differential Equations by Spline Collocation Methods,” J. Comput. Appl. Math., 255(1), pp. 216–230. [CrossRef]
Bhrawy, A. H. , Doha, E. H. , Ezz-Eldien, S. S. , and Abdelkawy, M. A. , 2016, “ A Numerical Technique Based on the Shifted Legendre Polynomials for Solving the Time-Fractional Coupled KdV Equation,” Calcolo, 53(1), pp. 1–17. [CrossRef]
Baleanu, D. , Golmankhaneh, A. K. , and Golmankhaneh, A. K. , 2009, “ Solving of the Fractional Non-Linear and Linear Schrodinger Equations by Homotopy Perturbation Method,” Rom. J. Phys., 54(10), pp. 823–832.
Bhrawy, A. H. , and Alofi, A. S. , 2013, “ The Operational Matrix of Fractional Integration for Shifted Chebyshev Polynomials,” Appl. Math. Lett., 26(1), pp. 25–31. [CrossRef]
Bhrawy, A. H. , and Ezz-Eldien, S. S. , 2016, “ A New Legendre Operational Technique for Delay Fractional Optimal Control Problems,” Calcolo (published online).
Abdelkawy, M. A. , Ezz-Eldien, S. S. , and Amin, A. Z. M . , 2015, “ Jacobi Spectral Collocation Scheme for Solving Abel's Integral Equations,” Prog. Fractional Differ. Appl., 1(3), pp. 1–14.
Samko, S. G. , and Ross, B. , 1993, “ Integration and Differentiation to a Variable Fractional Order,” Integr. Transforms Spec. Funct., 1(4), pp. 277–300. [CrossRef]
Samko, S . , 2013, “ Fractional Integration and Differentiation of Variable Order: An Overview,” Nonlinear Dyn., 71(4), pp. 653–662. [CrossRef]
Valerio, D. , and Sa da Costa, J. , 2013, “ Variable Order Fractional Controllers,” Asian J. Control, 15(3), pp. 648–657. [CrossRef]
Soon, C. M. , Coimbra, C. F. M . , and Kobayashi, M. H. , 2005, “ The Variable Viscoelasticity Oscillator,” Ann. Phys., 14(6), pp. 378–389. [CrossRef]
Gerasimov, D. N. , Kondratieva, V. A. , and Sinkevich, O. A. , 2010, “ An Anomalous Non-Self-Similar Infiltration and Fractional Diffusion Equation,” Physica D, 239(16), pp. 1593–1597. [CrossRef]
Chen, W. , Zhang, J. , and Zhang, J. , 2013, “ A Variable-Order Time-Fractional Derivative Model for Chloride Ions Sub-Diffusion in Concrete Structures,” Fractional Calculus Appl. Anal., 16(1), pp. 76–92.
Shen, S. , Liu, F. , Anh, V. , Turner, I. , and Chen, J. , 2013, “ A Characteristic Difference Method for the Variable-Order Fractional Advection-Diffusion Equation,” J. Appl. Math. Comput., 42(1–2), pp. 371–386. [CrossRef]
Zhao, X. , Sun, Z.-z. , and Karniadakis, G. E. , 2015, “ Second-Order Approximations for Variable Order Fractional Derivatives: Algorithms and Applications,” J. Comput. Phys., 293, pp. 184–200. [CrossRef]
Abdelkawy, M. A. , Zaky, M. A. , Bhrawy, A. H. , and Baleanu, D. , 2015, “ Numerical Simulation of Time Variable Fractional Order Mobile-Immobile Advection-Dispersion Model,” Rom. Rep. Phys., 67(3), pp. 773–791.
Sun, H. , Chen, W. , Li, C. , and Chen, Y. , 2012, “ Finite Difference Schemes for Variable-Order Time Fractional Diffusion Equation,” Int. J. Bifurcation Chaos, 22(4), p. 1250085. [CrossRef]
Fu, Z. J. , Chen, W. , and Ling, L. , 2015, “ Method of Approximate Particular Solutions for Constant- and Variable-Order Fractional Diffusion Models,” Eng. Anal. Boundary Elem., 57(8), pp. 37–46. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Convergence of problem (6.1) with K = 0.01 (a) and K = 1 (b) at h=L=τ=1 and various choices of ζ(x,t)

Grahic Jump Location
Fig. 2

Convergence of problem (6.1) with ζ(x,t)=(2+sin(xt))/4 (a) and ζ(x,t)=(6−x3+t5)/10 (b) at h=L=τ=K=1

Grahic Jump Location
Fig. 3

Convergence of problem (6.2) at ζ(x,y,t)=05 (a) and ζ(x,y,t)=08 (b)

Grahic Jump Location
Fig. 4

Convergence of problem (6.2) at ζ(x,y,t)=(20−exyt)/30 (a) and ζ(x,y,t)=(9−(xt)2−sin (xy)3)/50 (b)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In