Sheikholeslami,
M.
,
Ganji,
D. D.
,
Javed,
M. Y.
, and
Ellahi,
R.
, 2015, “
Effect of Thermal Radiation on Magnetohydrodynamics Nanofluid Flow and Heat Transfer by Means of Two Phase Model,” J. Magn. Magn. Mater.,
374(15), pp. 36–43.

[CrossRef]
Sheikholeslami,
M.
, and
Ganji,
D. D.
, 2015, “
Entropy Generation of Nanofluid in Presence of Magnetic Field Using Lattice Boltzmann Method,” Phys. A,
417, pp. 273–286.

[CrossRef]
Sheikholeslami,
M.
, and
Rashidi,
M. M.
, 2015, “
Effect of Space Dependent Magnetic Field on Free Convection of Fe

_{3}O

_{4}–Water Nanofluid,” J. Taiwan Inst. Chem. Eng.,
56, pp. 6–15.

[CrossRef]
Sheikholeslami,
M.
,
Hayat,
T.
, and
Alsaedi,
A.
, 2016, “
MHD Free Convection of Al

_{2}O

_{3}–Water Nanofluid Considering Thermal Radiation: A Numerical Study,” Int. J. Heat Mass Transfer,
96, pp. 513–524.

[CrossRef]
Sheikholeslami,
M.
,
Rashidi,
M. M.
, and
Ganji,
D. D.
, 2015, “
Effect of Non-Uniform Magnetic Field on Forced Convection Heat Transfer of Fe

_{3}O

_{4}–Water Nanofluid,” Comput. Methods Appl. Mech. Eng.,
294, pp. 299–312.

[CrossRef]
Liu,
Y.
, and
He,
J. H.
, 2007, “
Bubble Electrospinning for Mass Production of Nanofibers,” Int. J. Nonlinear Sci. Numer. Simul.,
8, pp. 393–396.

He,
J. H.
,
Wan,
Y. Q.
, and
Xu,
L.
, 2007, “
Nano-Effects, Quantum-Like Properties in Electrospun Nanofibers,” Chaos, Solitons Fractals,
33(1), pp. 26–37.

[CrossRef]
He,
J. H.
,
Liu,
Y. Y.
,
Xu,
L.
, and
Yu,
J. Y.
, 2007, “
Micro Sphere With Nanoporosity by Electrospinning,” Chaos, Solitons Fractals,
32(3), pp. 1096–1100.

[CrossRef]
He,
J. H.
, and
Zhu,
S. D.
, 2008, “
Differential-Difference Model for Nanotechnology,” J. Phys.: Conf. Ser.,
96(1), p. 012189.

[CrossRef]
Zhu,
S. D.
, 2007, “
Exp-Function Method for the Discrete mKdV Lattice,” Int. J. Nonlinear Sci. Numer. Simul.,
8(3), pp. 465–469.

Zhu,
S. D.
,
Chu,
Y. M.
, and
Qiu,
S. L.
, 2009, “
The Homotopy Perturbation Method for Discontinued Problems Arising in Nanotechnology,” Comput. Math. Appl.,
58, pp. 2398–2401.

[CrossRef]
Singh,
J.
,
Kumar,
D.
, and
Kumar,
S.
, 2013, “
A Reliable Algorithm for Solving Discontinued Problems Arising in Nanotechnology,” Sci. Iran.,
20(3), pp. 1059–1062.

Shah,
K.
, and
Singh,
T.
, 2015, “
The Mixture of New Integral Transform and Homotopy Perturbation Method for Solving Discontinued Problems Arising in Nanotechnology,” Open J. Appl. Sci.,
5(11), pp. 688–695.

[CrossRef]
Podlubny,
I.
, 1999, Fractional Differential Equations,
Academic Press,
New York.

Caputo,
M.
, 1969, Elasticita e Dissipazione,
Zani-Chelli,
Bologna, Italy.

Miller,
K. S.
, and
Ross,
B.
, 1993, An Introduction to the Fractional Calculus and Fractional Differential Equations,
Wiley,
New York.

Baleanu,
D.
,
Guvenc,
Z. B.
, and
Machado,
J. A. T.
, eds., 2010, New Trends in Nanotechnology and Fractional Calculus Applications,
Springer,
New York.

Tarasov,
V. E.
, 2016, “
Three-Dimensional Lattice Models With Long-Range Interactions of Grünwald–Letnikov Type for Fractional Generalization of Gradient Elasticity,” Meccanica,
51(1), pp. 125–138.

[CrossRef]
Sierociuk,
D.
,
Skovranek,
T.
,
Macias,
M.
,
Podlubny,
I.
,
Petras,
I.
,
Dzielinski,
A.
, and
Ziubinski,
P.
, 2015, “
Diffusion Process Modeling by Using Fractional-Order Models,” Appl. Math. Comput.,
257, pp. 2–11.

Magin,
R. L.
, 2006, Fractional Calculus in Bioengineering,
Begell House,
Redding, CT.

Garra,
R.
,
Giusti,
A.
,
Mainardi,
F.
, and
Pagnini,
G.
, 2014, “
Fractional Relaxation With Time-Varying Coefficient,” Fractional Calculus Appl. Anal.,
17(2), pp. 424–439.

Saxena,
R. K.
,
Mathai,
A. M.
, and
Haubold,
H. J.
, 2006, “
Fractional Reaction-Diffusion Equations,” Astrophys. Space Sci.,
305(3), pp. 289–296.

[CrossRef]
Nigmatullin,
R. R.
,
Ceglie,
C.
,
Maione,
G.
, and
Striccoli,
D.
, 2015, “
Reduced Fractional Modeling of 3D Video Streams: The FERMA Approach,” Nonlinear Dyn.,
80(4), pp. 1869–1882.

[CrossRef]
Kilbas,
A. A.
,
Srivastava,
H. M.
, and
Trujillo,
J. J.
, 2006, Theory and Applications of Fractional Differential Equations,
Elsevier,
Amsterdam, The Netherlands.

Razminia,
K.
,
Razminia,
A.
, and
Machado,
J. A. T.
, 2016, “
Analytical Solution of Fractional Order Diffusivity Equation With Wellbore Storage and Skin Effects,” ASME J. Comput. Nonlinear Dyn.,
11(1), p. 011006.

[CrossRef]
Krishnasamy,
V. S.
, and
Razzaghi,
M.
, 2016, “
The Numerical Solution of the Bagley–Torvik Equation With Fractional Taylor Method,” ASME J. Comput. Nonlinear Dyn.,
11(5), p. 051010.

[CrossRef]
He,
J. H.
, 1999, “
Homotopy Perturbation Technique,” Comput. Method Appl. Mech. Eng.,
178(3/4), pp. 257–262.

[CrossRef]
Sheikholeslami,
M.
, and
Ganji,
D. D.
, 2013, “
Heat Transfer of Cu–Water Nanofluid Flow Between Parallel Plates,” Powder Technol.,
235, pp. 873–879.

[CrossRef]
Sheikholeslami,
M.
, and
Ganji,
D. D.
, 2015, “
Nanofluid Flow and Heat Transfer Between Parallel Plates Considering Brownian Motion Using DTM,” Comput. Methods Appl. Mech. Eng.,
283, pp. 651–663.

[CrossRef]
Sheikholeslami,
M.
,
Rashidi,
M. M.
,
Saad,
D. M. A.
,
Firouzi,
F.
,
Rokni,
H. B.
, and
Domairry,
G.
, “
Steady Nanofluid Flow Between Parallel Plates Considering Thermophoresis and Brownian Effects,” J. King Saud Univ. Sci. (in press).

Adomian,
G.
, 1994, Solving Frontier Problems of Physics: The Decomposition Method,
Kluwer Academic Publishers,
Boston.

Wazwaz,
A. M.
,
Rach,
R.
, and
Duan,
J. S.
, 2015, “
Solving New Fourth-Order Emden–Fowler-Type Equations by the Adomian Decomposition Method,” Int. J. Comput. Methods Eng. Sci. Mech.,
16(2), pp. 121–131.

[CrossRef]
Duan,
J. S.
,
Rach,
R.
, and
Wazwaz,
A. M.
, 2014, “
A Reliable Algorithm for Positive Solutions of Nonlinear Boundary Value Problems by the Multistage Adomian Decomposition Method,” Open Eng.,
5(1), pp. 59–74.

[CrossRef]
Bobolian,
E.
,
Vahidi,
A. R.
, and
Shoja,
A.
, 2014, “
An Efficient Method for Nonlinear Fractional Differential Equations: Combination of the Adomian Decomposition Method and Spectral Method,” Int. J. Pure Appl. Math.,
45(6), pp. 1017–1028.

Sheikholeslami,
M.
,
Ganji,
D. D.
, and
Ashorynejad,
H. R.
, 2013, “
Investigation of Squeezing Unsteady Nanofluid Flow Using ADM,” Powder Technol.,
239, pp. 259–265.

[CrossRef]
Ashorynejad,
H. R.
,
Javaherdeh,
K.
,
Sheikholeslami,
M.
, and
Ganji,
D. D.
, 2014, “
Investigation of the Heat Transfer of a Non-Newtonian Fluid Flow in an Axisymmetric Channel With Porous Wall Using Parameterized Perturbation Method (PPM),” J. Franklin Inst.,
351(2), pp. 701–712.

[CrossRef]
Fakour,
M.
,
Vahabzadeh,
A.
,
Ganji,
D. D.
, and
Hatami,
M.
, 2015, “
Analytical Study of Micropolar Fluid Flow and Heat Transfer in a Channel With Permeable Walls,” J. Mol. Liq.,
204, pp. 198–204.

[CrossRef]
Malvandi,
A.
,
Moshizi,
S. A.
, and
Ganji,
D. D.
, 2014, “
An Analytical Study on Unsteady Motion of Vertically Falling Spherical Particles in Quiescent Power-Law Shear-Thinning Fluids,” J. Mol. Liq.,
193, pp. 166–173.

[CrossRef]
Liao,
S. J.
, 2003, Beyond Perturbation: Introduction to Homotopy Analysis Method,
Chapman and Hall/CRC Press,
Boca Raton, FL.

Liao,
S. J.
, 1995, “
An Approximate Solution Technique Not Depending on Small Parameters: A Special Example,” Int. J. Non-Linear Mech.,
30(3), pp. 371–380.

[CrossRef]
Liao,
S. J.
, 2012, Homotopy Analysis Method in Nonlinear Differential Equations,
Springer-Verlag,
Berlin.

Kumar,
S.
,
Kumar,
D.
, and
Singh,
J.
, 2014, “
Numerical Computation of Fractional Black–Scholes Equation Arising in Financial Market,” Egypt. J. Basic Appl. Sci.,
1(3–4), pp. 177–183.

[CrossRef]
Zou,
K.
, and
Nagarajaiah,
S.
, 2015, “
An Analytical Method for Analyzing Symmetry-Breaking Bifurcation and Period-Doubling Bifurcation,” Commun. Nonlinear Sci. Numer. Simul.,
22(1–3), pp. 780–792.

[CrossRef]
Odibat,
Z.
, and
Bataineh,
A. S.
, 2015, “
An Adaptation of Homotopy Analysis Method for Reliable Treatment of Strongly Nonlinear Problems: Construction of Homotopy Polynomials,” Math. Methods Appl. Sci.,
38(5), pp. 991–1000.

[CrossRef]
Miandoab,
E. M.
,
Tajaddodianfar,
F.
,
Pishkenari,
H. N.
, and
Ouakad,
H. M.
, 2015, “
Analytical Solution for the Forced Vibrations of a Nano-Resonator With Cubic Nonlinearities Using Homotopy Analysis Method,” Int. J. Nanosci. Nanotechnol.,
11(3), pp. 159–166.

Freidoonimehr,
N.
,
Rostami,
B.
, and
Rashidi,
M. M.
, 2015, “
Predictor Homotopy Analysis Method for Nanofluid Flow Through Expanding or Contracting Gaps With Permeable Walls,” Int. J. Biomath.,
8(4), p. 1550050.

[CrossRef]
Khuri,
S. A.
, 2001, “
A Laplace Decomposition Algorithm Applied to a Class of Nonlinear Differential Equations,” J. Appl. Math.,
1(4), pp. 141–155.

[CrossRef]
Ramswroop
,
Singh,
J.
, and
Kumar,
D.
, 2015, “
Numerical Computation of Fractional Lotka–Volterra Equation Arising in Biological Systems,” Nonlinear Eng.,
4(2), pp. 117–125.

[CrossRef]
Ramswroop
,
Singh,
J.
, and
Kumar,
D.
, 2014, “
Numerical Study for Time-Fractional Schrödinger Equations Arising in Quantum Mechanics,” Nonlinear Eng.,
3(3), pp. 169–177.

[CrossRef]
Gupta,
S.
,
Kumar,
D.
, and
Singh,
J.
, 2015, “
Numerical Study for Systems of Fractional Differential Equations Via Laplace Transform,” J. Egypt. Math. Soc.,
23(2), pp. 256–262.

[CrossRef]
Kumar,
D.
,
Singh,
J.
, and
Kumar,
S.
, 2015, “
Analytical Modeling for Fractional Multi-Dimensional Diffusion Equations by Using Laplace Transform,” Commun. Numer. Anal.,
2015(1), pp. 16–29.

[CrossRef]
Rathore,
S.
,
Kumar,
D.
,
Singh,
J.
, and
Gupta,
S.
, 2012, “
Homotopy Analysis Sumudu Transform Method for Nonlinear Equations,” Int. J. Ind. Math.,
4(4), pp. 301–314.

Watugala,
G. K.
, 1993, “
Sumudu Transform—A New Integral Transform to Solve Differential Equations and Control Engineering Problems,” Int. J. Math. Educ. Sci. Tech.,
24(1), pp. 35–43.

[CrossRef]
Belgacem,
F. B. M.
,
Karaballi,
A. A.
, and
Kalla,
S. L.
, 2003, “
Analytical Investigations of the Sumudu Transform and Applications to Integral Production Equations,” Math. Probl. Eng.,
2003(3), pp. 103–118.

[CrossRef]
Khalaf,
R. F.
, and
Belgacem,
F. B. M.
, 2014, “
Extraction of the Laplace, Fourier, and Mellin Transforms From the Sumudu Transform,” AIP Conf. Proc.,
1637, p. 1426.

Srivastava,
H. M.
,
Golmankhaneh,
A. K.
,
Baleanu,
D.
, and
Yang,
X. J.
, 2014, “
Local Fractional Sumudu Transform With Application to IVPs on Cantor Sets,” Abstr. Appl. Anal.,
2014, p. 620529.

Singh,
J.
,
Kumar,
D.
, and
Kilicman,
A.
, 2014, “
Numerical Solutions of Nonlinear Fractional Partial Differential Equations Arising in Spatial Diffusion of Biological Populations,” Abstr. Appl. Anal.,
2014, p. 535793.