Gear,
C. W.
, 1971, Numerical Initial Value Problems in Ordinary Differential Equations,
Prentice Hall PTR,
Upper Saddle River, NJ.

Petzold,
L.
, 1982, “
Differential/Algebraic Equations Are not ODE's,” SIAM J. Sci. Stat. Comput.,
3(3), pp. 367–384.

[CrossRef]
Brenan,
K. E.
,
Campbell,
S. L.
, and
Petzold,
L. R.
, 1996, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, Vol.
14,
Siam, pp. 16–18.

Negrut,
D.
,
Jay,
L. O.
, and
Khude,
N.
, 2009, “
A Discussion of Low-Order Numerical Integration Formulas for Rigid and Flexible Multibody Dynamics,” ASME J. Comput. Nonlinear Dyn.,
4(2), p. 021008.

[CrossRef]
Gear,
C. W.
, 1988, “
Differential-Algebraic Equation Index Transformations,” SIAM J. Sci. Stat. Comput.,
9(1), pp. 39–47.

[CrossRef]
Pantelides,
C. C.
, 1988, “
The Consistent Initialization of Differential-Algebraic Systems,” SIAM J. Sci. Stat. Comput.,
9(2), pp. 213–231.

[CrossRef]
Mattsson,
S. E.
, and
Söderlind,
G.
, 1993, “
Index Reduction in Differential-Algebraic Equations Using Dummy Derivatives,” SIAM J. Sci. Comput.,
14(3), pp. 677–692.

[CrossRef]
Yen,
J.
, 1993, “
Constrained Equations of Motion in Multibody Dynamics as ODEs on Manifolds,” SIAM J. Numer. Anal.,
30(2), pp. 553–568.

[CrossRef]
Bauchau,
O. A.
, and
Laulusa,
A.
, 2008, “
Review of Contemporary Approaches for Constraint Enforcement in Multibody Systems,” ASME J. Comput. Nonlinear Dyn.,
3(1), p. 011005.

[CrossRef]
Baumgarte,
J.
, 1972, “
Stabilization of Constraints and Integrals of Motion in Dynamical Systems,” Comput. Methods Appl. Mech. Eng.,
1(1), pp. 1–16.

[CrossRef]
Barrlund,
A.
, and
Kågström,
B.
, 1990, “
Analytical and Numerical Solutions to Higher Index Linear Variable Coefficient DAE Systems,” J. Comput. Appl. Math.,
31(3), pp. 305–330.

[CrossRef]
Bae,
D.
,
Cho,
H.
,
Lee,
S.
, and
Moon,
W.
, 2001, “
Recursive Formulas for Design Sensitivity Analysis of Mechanical Systems,” Comput. Methods Appl. Mech. Eng.,
190(29), pp. 3865–3879.

[CrossRef]
Bursi,
O. S.
,
Wang,
Z.
,
Jia,
C.
, and
Wu,
B.
, 2013, “
Monolithic and Partitioned Time Integration Methods for Real-Time Heterogeneous Simulations,” Comput. Mech.,
52(1), pp. 99–119.

[CrossRef]
Laulusa,
A.
, and
Bauchau,
O. A.
, 2008, “
Review of Classical Approaches for Constraint Enforcement in Multibody Systems,” ASME J. Comput. Nonlinear Dyn.,
3(1), p. 011004.

[CrossRef]
Blajer,
W.
, 2002, “
Elimination of Constraint Violation and Accuracy Aspects in Numerical Simulation of Multibody Systems,” Multibody Syst. Dyn.,
7(3), pp. 265–284.

[CrossRef]
Braun,
D. J.
, and
Goldfarb,
M.
, 2009, “
Eliminating Constraint Drift in the Numerical Simulation of Constrained Dynamical Systems,” Comput. Methods Appl. Mech. Eng.,
198(37), pp. 3151–3160.

[CrossRef]
Blajer,
W.
, 2011, “
Methods for Constraint Violation Suppression in the Numerical Simulation of Constrained Multibody Systems—A Comparative Study,” Comput. Methods Appl. Mech. Eng.,
200(13), pp. 1568–1576.

[CrossRef]
Haug,
E. J.
,
Negrut,
D.
, and
lancu,
M.
, 1997, “
A State-Space-Based Implicit Integration Algorithm for Differential-Algebraic Equations of Multibody Dynamics*,” J. Struct. Mech.,
25(3), pp. 311–334.

Negrut,
D.
,
Haug,
E. J.
, and
German,
H. C.
, 2003, “
An Implicit Runge–Kutta Method for Integration of Differential Algebraic Equations of Multibody Dynamics,” Multibody Syst. Dyn.,
9(2), pp. 121–142.

[CrossRef]
Krenk,
S.
, and
Nielsen,
M. B.
, 2014, “
Conservative Rigid Body Dynamics by Convected Base Vectors With Implicit Constraints,” Comput. Methods Appl. Mech. Eng.,
269, pp. 437–453.

[CrossRef]
Wehage,
R. A.
, and
Haug,
E. J.
, 1982, “
Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems,” ASME J. Mech. Des.,
104(1), pp. 247–255.

[CrossRef]
de Jalon,
J. G.
, and
Gutierrez-Lopez,
M. D.
, 2013, “
Multibody Dynamics With Redundant Constraints and Singular Mass Matrix: Existence, Uniqueness, and Determination of Solutions for Accelerations and Constraint Forces,” Multibody Syst. Dyn.,
30(3), pp. 311–341.

[CrossRef]
Dopico,
D.
,
Zhu,
Y.
,
Sandu,
A.
, and
Sandu,
C.
, 2013, “
Direct and Adjoint Sensitivity Analysis of Multibody Systems Using Maggi's Equations,” ASME Paper No. DETC2013-12696.

Haug,
E. J.
, 1989, Computer Aided Kinematics and Dynamics of Mechanical Systems,
Allyn and Bacon,
Boston.

Hilber,
H. M.
,
Hughes,
T. J.
, and
Taylor,
R. L.
, 1977, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics,” Earthquake Eng. Struct. Dyn.,
5(3), pp. 283–292.

[CrossRef]
Chung,
J.
, and
Hulbert,
G. M.
, 1993, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-

*α* Method,” ASME J. Appl. Mech.,
60(2), pp. 371–375.

[CrossRef]
Yen,
J.
,
Petzold,
L.
, and
Raha,
S.
, 1998, “
A Time Integration Algorithm for Flexible Mechanism Dynamics: The DAE

*α*-Method,” Comput. Methods Appl. Mech. Eng.,
158(3), pp. 341–355.

[CrossRef]
Simeon,
B.
, 2013, “
*Computational Flexible Multibody Dynamics: A Differential-Algebraic Approach*,” (Differential-Algebraic Equations Forum),
Springer,
Berlin.

Negrut,
D.
,
Rampalli,
R.
,
Ottarsson,
G.
, and
Sajdak,
A.
, 2005, “
On the Use of the HHT Method in the Context of Index 3 Differential Algebraic Equations of Multibody Dynamics,” ASME Paper No. DETC2005-85096.

Arnold,
M.
, and
Brüls,
O.
, 2007, “
Convergence of the Generalized-

*α* Scheme for Constrained Mechanical Systems,” Multibody Syst. Dyn.,
18(2), pp. 185–202.

[CrossRef]
Arnold,
M.
,
Brüls,
O.
, and
Cardona,
A.
, 2015, “
Error Analysis of Generalized-

*α* Lie Group Time Integration Methods for Constrained Mechanical Systems,” Numer. Math.,
129(1), pp. 149–179.

[CrossRef]
Cardona,
A.
, and
Geradin,
M.
, 1989, “
Time Integration of the Equations of Motion in Mechanism Analysis,” Comput. Struct.,
33(3), pp. 801–820.

[CrossRef]
Jay,
O. L.
, and
Negrut,
D.
, 2009, “
A Second Order Extension of the Generalized–*α* Method for Constrained Systems in Mechanics,” Multibody Dynamics,
Springer,
Dordrecht, The Netherlands, pp. 143–158.

Carpanzano,
E.
, 2000, “
Order Reduction of General Nonlinear DAE Systems by Automatic Tearing,” Math. Comput. Modell. Dyn. Syst.,
6(2), pp. 145–168.

[CrossRef]
Hidalgo,
A. F.
, and
Garcia de Jalon,
J.
, 2013, “
Efficient Implementation of a Semi-Recursive Formulation for the Dynamics of Large Size Multibody Systems,” Rev. Int. Metodos Numericos Cálculo Diseño en Ingeniería,
29(4), pp. 225–233.

Koul,
M.
,
Shah,
S. V.
,
Saha,
S. K.
, and
Manivannan,
M.
, 2014, “
Reduced-Order Forward Dynamics of Multiclosed-Loop Systems,” Multibody Syst. Dyn.,
31(4), pp. 451–476.

[CrossRef]
Walker,
M. W.
, and
Orin,
D. E.
, 1982, “
Efficient Dynamic Computer Simulation of Robotic Mechanisms,” ASME J. Dyn. Syst., Meas., Control,
104(3), pp. 205–211.

[CrossRef]
Wittenburg,
J.
, 2007, Dynamics of Multibody Systems,
Springer Science & Business Media,
Berlin, pp. 129–147.

Schweizer,
B.
, and
Lu,
D.
, 2015, “
Stabilized Index-2 Co-Simulation Approach for Solver Coupling With Algebraic Constraints,” Multibody Syst. Dyn.,
34(2), pp. 129–161.

[CrossRef]
Felippa,
C. A.
,
Park,
K. C.
, and
Farhat,
C.
, 2001, “
Partitioned Analysis of Coupled Mechanical Systems,” Comput. Methods Appl. Mech. Eng.,
190(24), pp. 3247–3270.

[CrossRef]
González,
F.
,
Luaces,
A.
,
Lugrís,
U.
, and
González,
M.
, 2009, “
Non-Intrusive Parallelization of Multibody System Dynamic Simulations,” Comput. Mech.,
44(4), pp. 493–504.

[CrossRef]
Hopcroft,
J. E.
, and
Karp,
R. M.
, 1973, “
An

*n*^{5/2} Algorithm for Maximum Matchings in Bipartite Graphs,” SIAM J. Comput.,
2(4), pp. 225–231.

[CrossRef]
Nuutila,
E.
, and
Soisalon-Soininen,
E.
, 1994, “
On Finding the Strongly Connected Components in a Directed Graph,” Inf. Process. Lett.,
49(1), pp. 9–14.

[CrossRef]
Carpanzano,
E.
, and
Maffezzoni,
C.
, 1998, “
Symbolic Manipulation Techniques for Model Simplification in Object-Oriented Modelling of Large Scale Continuous Systems,” Math. Comput. Simul.,
48(2), pp. 133–150.

[CrossRef]
Tongyuan
, 2016, “Complex Engineering Systems Modeling, Simulation, Analysis and Optimization,”
Suzhou Tongyuan Soft Control Information Technology Co., Ltd.,
Suzhou, China.

Dassault Systèmes
, 2016, “
CATIA Systems Engineering—DYMOLA,” Dassault Systèmes,
Vélizy-Villacoublay,
France.