Juang,
J.-N.
, 1994, Applied System Identification,
Prentice-Hall,
Upper Saddle River, NJ.

Juang,
J.-N.
, and
Pappa,
R.
, 1985, “
An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction,” J. Guid.,
8(5), pp. 620–627.

[CrossRef]
Tischler,
M.
, and
Remple,
R.
, 2012, Aircraft and Rotorcraft System Identification,
American Institute of Aeronautics and Astronautics,
Reston, VA.

Cooper,
J.
, and
Wright,
J.
, 1992, “
Spacecraft In-Orbit Identification Using Eigensystem Realization Methods,” J. Guid., Control, Dyn.,
15(2), pp. 352–359.

[CrossRef]
Pappa,
R.
, and
Juang,
J.-N.
, 1984, “
Galileo Spacecraft Modal Identification Using an Eigensystem Realization Algorithm,” AIAA Paper No. 84-1070.

Iliff,
K.
, 1989, “
Parameter Estimation for Flight Vehicles,” J. Guid., Control, Dyn.,
12(5), pp. 609–622.

[CrossRef]
Kabaila,
P.
, 1983, “
On Output-Error Methods for System Identification,” IEEE Trans. Autom. Control,
28(1), pp. 12–13.

[CrossRef]
Landau,
I.
, and
Karimi,
A.
, 1997, “
An Output Error Recursive Algorithm for Unbiased Identification in Closed Loop,” Automatica,
33(5), pp. 933–938.

[CrossRef]
Iliff,
K. W.
, and
Maine,
R. E.
, 1982, “
NASA Dryden's Experience in Parameter Estimation and Its Use in Flight Test,” AIAA Paper No. 82-1373.

Greene,
W.
, 1980, “
Maximum Likelihood Estimation of Econometric Frontier Functions,” J. Econometrics,
13(1), pp. 27–56.

[CrossRef]
Taylor,
B.
, and
Rogers,
J.
, 2014, “
Experimental Investigation of Real-Time Helicopter Weight Estimation,” J. Aircr.,
51(3), pp. 1047–1051.

[CrossRef]
Akaike,
H.
, 1974, “
A New Look at the Statistical Model Identification,” IEEE Trans. Autom. Control, AC-
19(6), pp. 716–723.

[CrossRef]
Akaike,
H.
, 1972, “
Information Theory and an Extension of the Maximum Likelihood Principle,” 2nd International Symposium on Information Theory, Supplement to Problems of Control and Information Theory, pp. 267–281.

Baram,
Y.
, and
Sandell,
N.
, 1978, “
An Information Theoretic Approach to Dynamical Systems Modeling and Identification,” IEEE Trans. Autom. Control,
AC-23(1), pp. 1113–1118.

Matsuoka,
T.
, and
Ulrych,
T.
, 1986, “
Information Theory Measures With Application to Model Identification,” IEEE Trans. Acoust., Speech, Signal Process.,
34(3), pp. 511–517.

[CrossRef]
Kulhavy,
R.
, 1996, “
A Kullback–Leibler Approach to System Identification,” Annu. Rev. Control,
20, pp. 119–130.

[CrossRef]
Kulhavy,
R.
, 1996, “
From Matching Data to Matching Probabilities,” *Recursive Nonlinear Estimation: A Geometric Approach*, Springer Berlin Heidelberg, pp. 13–61.

Kulhavy,
R.
, 1998, “
On Extension of Information Geometry of Parameter Estimation to State Estimation,” Conference on Mathematical Theory of Networks and Systems (MTNS 98), Padova, Italy, July 6–10.

Chernyshov,
K.
, 2006, “
An Information Theoretic Approach to System Identification Via Input/Output Signal Processing,” 2006 International Conference on Speech and Computer, St. Petersburg, Russia, June 25–29.

Chernyshov,
K.
, 2009, “
An Information Theoretic Approach to Neural Network Based System Identification,” 2009 Siberian Conference on Control and Communications, Tomsk, Russia, Mar. 27–28.

Majda,
A.
, and
Gershgorin,
B.
, “
Improving Model Fidelity and Sensitivity for Complex Systems Through Empirical Information Theory,” Proc. Natl. Acad. Sci.,
108(25), pp. 10044–10049.

[CrossRef]
Granger,
C. W.
, 1969, “
Investigating Causal Relations by Econometric Models and Cross-Spectral Methods,” Econometrica,
37(3), pp. 425–438.

Granger,
C. W.
, 1988, “
Some Recent Developments in a Concept of Causality,” J. Econometrics.,
39(1–2), pp. 199–211.

[CrossRef]
Scheiber,
T.
, 2000, “
Measuring Information Transfer,” Phys. Rev. Lett.,
85(2), pp. 461–464.

[CrossRef] [PubMed]
Honey,
C.
,
Kötter,
R.
,
Breakspear,
M.
, and
Sporns,
O.
, 2007, “
Network Structure of Cerebral Cortex Shapes Functional Connectivity on Multiple Time Scales,” Proc. Natl. Acad. Sci.,
104(24), pp. 10240–10245.

[CrossRef]
Vicente,
R.
,
Wibral,
M.
,
Lindner,
M.
, and
Pipa,
G.
, 2011, “
Transfer Entropy—A Model-Free Measure of Effective Connectivity for the Neurosciences,” J. Comput. Neurosci.,
30(1), pp. 45–67.

[CrossRef] [PubMed]
Sun,
J.
, and
Bollt,
E.
, 2014, “
Causation Entropy Identifies Indirect Influences, Dominance of Neighbors and Anticipatory Couplings,” Phys. D,
267, pp. 49–57.

[CrossRef]
Sun,
J.
,
Cafaro,
C.
, and
Bollt,
E.
, 2014, “
Identifying the Coupling Structure in Complex Systems Through the Optimal Causation Entropy Principle,” Entropy,
16(6), pp. 3416–3433.

[CrossRef]
Sun,
J.
,
Taylor,
D.
, and
Bollt,
E.
, 2015, “
Causal Network Inference by Optimal Causation Entropy,” SIAM J. Appl. Dyn. Syst.,
14(1), pp. 73–106.

[CrossRef]
Cover,
T.
, and
Thomas,
J.
, 1991, Elements of Information Theory, 2nd ed.,
Wiley,
Hoboken, NJ, Chap. 2.

Sobczyk,
K.
, and
Holobut,
P.
, 2012, “
Information Theoretic Approach to Dynamics of Stochastic Systems,” Probab. Eng. Mech.,
27(1), pp. 47–56.

[CrossRef]
Prokopenko,
M.
,
Lizier,
J.
, and
Price,
D.
, 2013, “
On Thermodynamic Interpretation of Transfer Entropy,” Entropy,
15(2), pp. 524–543.

[CrossRef]
Hahs,
D.
, and
Pethel,
S.
, 2013, “
Transfer Entropy for Coupled Autoregressive Processes,” Entropy,
15(3), pp. 767–788.

[CrossRef]
Materassi,
M.
,
Consolini,
G.
,
Smith,
N.
, and
De Marco,
R.
, 2014, “
Information Theory Analysis of Cascading Process in a Synthetic Model of Fluid Turbulence,” Entropy,
16(3), pp. 1272–1286.

[CrossRef]
Silverman,
B.
, 1986, Density Estimation for Statistics and Data Analysis,
Springer Science and Business Media,
New York, NY.

Moon,
Y.-I.
,
Rajagopalan,
B.
, and
Lall,
U.
, 1995, “
Estimation of Mutual Information Using Kernel Density Estimators,” Phys. Rev. E,
52(3), pp. 2318–2321.

[CrossRef]
Kraskov,
A.
,
Stogbauer,
A.
, and
Grassberger,
P.
, 2004, “
Estimating Mutual Information,” Phys. Rev. E,
69(6), p. 066138.

[CrossRef]
Hlavackova-Schindler,
K.
,
Palus,
M.
,
Vejmelka,
M.
, and
Bhattacharya,
J.
, 2007, “
Causality Detection Based on Information Theoretic Approaches to Time Series Analysis,” Phys. Rep.,
441(1), pp. 1–46.

[CrossRef]
Scott,
D.
, 1992, Multivariate Density Estimation: Theory, Practice, and Visualization,
Wiley,
Hoboken, NJ, Chap. 6.

Barrat,
A.
,
Barthelemy,
M.
, and
Vespignani,
A.
, 2008, Dynamical Processes on Complex Networks,
Cambridge University Press,
Cambridge, UK.

Hénon,
M.
, 1976, “
A Two-Dimensional Mapping With a Strange Attractor,” Commun. Math. Phys.,
50(1), pp. 69–77.

[CrossRef]
Reinhall,
P.
,
Caughey,
T.
, and
Storti,
D.
, 1989, “
Order and Chaos in a Discrete Duffing Oscillator: Implications on Numerical Integration,” ASME J. Appl. Mech.,
56(1), pp. 162–167.

[CrossRef]
More,
J. J.
, 1978, “
The Levenberg–Marquardt Algorithm: Implementation and Theory,” Numerical Analysis: Proceedings of the Biennial Conference Dundee, June 28–July 1, G. A. Watson, ed.,
Springer,
Berlin, pp. 105–116.