Dombovari,
Z.
,
Barton,
D. A. W.
,
Wilson,
R. E.
, and
Stépán,
G.
, 2011, “
On the Global Dynamics of Chatter in the Orthogonal Cutting Model,” Int. J. Nonlinear Mech.,
46(1), pp. 330–338.

[CrossRef]
Nayfeh,
A. H.
, and
Nayfeh,
N. A.
, 2011, “
Analysis of the Cutting Tool on a Lathe,” Nonlinear Dyn.,
63(3), pp. 395–416.

[CrossRef]
Kalmár-Nagy,
T.
,
Stépán,
G.
, and
Moon,
F. C.
, 2001, “
Subcritical Hopf Bifurcation in the Delay Equation Model for Machine Tool Vibrations,” Nonlinear Dyn.,
26(2), pp. 121–142.

[CrossRef]
Kalmár-Nagy,
T.
, 2009, “
Practical Stability Limits in Turning,” ASME Paper No. DETC2009-87645.

Lin,
S. Y.
,
Fang,
Y. C.
, and
Huang,
C. W.
, 2008, “
Improvement Strategy for Machine Tool Vibration Induced From the Movement of a Counterweight During Machining Process,” Int. J. Mach. Tools Manuf.,
48(7–8), pp. 870–877.

[CrossRef]
Khasawneh,
F. A.
,
Mann,
B. P.
,
Insperger,
T.
, and
Stépán,
G.
, 2009, “
Increased Stability of Low-Speed Turning Through a Distributed Force and Continuous Delay Model,” ASME J. Comput. Nonlinear Dyn.,
4(4), p. 041003.

Moradi,
H.
,
Bakhtiari-Nejad,
F.
, and
Movahhedy,
M. R.
, 2008, “
Tuneable Vibration Absorber Design to Suppress Vibrations: An Application in Boring Manufacturing Process,” J. Sound Vib.,
318(1–2), pp. 93–108.

[CrossRef]
Wang,
M.
, 2011, “
Feasibility Study of Nonlinear Tuned Mass Damper for Machining Chatter Suppression,” J. Sound Vib.,
330(9), pp. 1917–1930.

[CrossRef]
Vakakis,
A. F.
,
Gendelman,
O.
,
Bergman,
L. A.
,
McFarland,
D. M.
,
Kerschen,
G.
, and
Lee,
Y. S.
, 2008, Passive Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems: I and II,
Springer-Verlag,
Berlin, Germany.

Arnold,
V. I.
, 1988, Dynamical Systems III. Encyclopaedia of Mathematical Sciences,
Springer-Verlag,
Berlin.

Parseh,
M.
,
Dardel,
M.
, and
Ghasemi,
M. H.
, 2015, “
Performance Comparison of Nonlinear Energy Sink and Linear Tuned Mass Damper in Steady-State Dynamics of a Linear Beam,” Nonlinear Dyn.,
81(4), pp. 1981–2002.

[CrossRef]
Gourc,
E.
,
Elc,
L. D.
,
Kerschen,
G.
,
Michon,
G.
,
Aridon,
G.
, and
Hot,
A.
, 2016, “
Performance Comparison Between a Nonlinear Energy Sink and a Linear Tuned Vibration Absorber for Broadband Control,” *Nonlinear Dynamics*, Vol. 1 (Conference Proceedings of the Society for Experimental Mechanics Series),
Springer International Publishing, Cham, Switzerland, pp. 83–95.

Al-Shudeifat,
M. A.
,
Vakakis,
A. F.
, and
Bergman,
L. A.
, 2015, “
Shock Mitigation by Means of Low- to High-Frequency Nonlinear Targeted Energy Transfers in a Large-Scale Structure,” ASME J. Comput. Nonlinear Dyn.,
11(2), p. 021006.

Lee,
Y. S.
,
Vakakis,
A. F.
,
Bergman,
L. A.
,
McFarland,
D. M.
, and
Kerschen,
G.
, 2007, “
Suppression of Aeroelastic Instability by Means of Broadband Passive Targeted Energy Transfers, Part I: Theory,” AIAA J.,
45(3), pp. 693–711.

[CrossRef]
Lee,
Y. S.
,
Kerschen,
G.
,
McFarland,
D. M.
,
Hill,
W. J.
,
Nichkawde,
C.
,
Strganac,
T. W.
,
Bergman,
L. A.
, and
Vakakis,
A. F.
, 2007, “
Suppression of Aeroelastic Instability by Means of Broadband Passive Targeted Energy Transfers, Part II: Experiments,” AIAA J.,
45(10), pp. 2391–2400.

[CrossRef]
Lee,
Y. S.
,
Vakakis,
A. F.
,
Bergman,
L. A.
,
McFarland,
D. M.
, and
Kerschen,
G.
, 2008, “
Enhancing Robustness of Aeroelastic Instability Suppression Using Multi-Degree-of-Freedom Nonlinear Energy Sinks,” AIAA J.,
46(6), pp. 1371–1394.

[CrossRef]
Manevitch,
L.
, 2001, “
The Description of Localized Normal Modes in a Chain of Nonlinear Coupled Oscillators Using Complex Variables,” Nonlinear Dyn.,
25(1), pp. 95–109.

[CrossRef]
Namachchivaya,
N. S.
, and
Van Roessel,
H. J.
, 2003, “
A Center-Manifold Analysis of Variable Speed Machining,” Dyn. Syst.,
18(3), pp. 245–270.

[CrossRef]
Nankali,
A.
,
Surampalli,
H.
, and
Lee,
Y. S.
, 2011, “
Suppression of Machine Tool Chatter Using Nonlinear Energy Sink,” ASME Paper No. DETC2011-48502.

Nankali,
A.
,
Lee,
Y. S.
, and
Kalmár-Nagy,
T.
, 2013, “
Targeted Energy Transfer for Suppressing Regenerative Instabilities in a 2-DOF Machine Tool Model,” ASME Paper No. DETC2013-13510.

Gourc,
E.
,
Seguy,
S.
,
Michon,
G.
,
Berlioz,
A.
, and
Mann,
B. P.
, 2015, “
Quenching Chatter Instability in Turning Process With a Vibro-Impact Nonlinear Energy Sink,” J. Sound Vib.,
355, pp. 392–406.

[CrossRef]
Gourc,
E.
,
Seguy,
S.
,
Michon,
G.
, and
Berlioz,
A.
, 2012, “
Delayed Dynamical System Strongly Coupled to a Nonlinear Energy Sink: Application to Machining Chatter,” MATEC Web Conf.,
1, p. 05002.

Engelborghs,
K.
,
Luzyanina,
T.
, and
Roose,
D.
, 2002, “
Numerical Bifurcation Analysis of Delay Differential Equations Using DDE-BIFTOOL,” ACM Trans. Math. Software,
28(1), pp. 1–21.

[CrossRef]
Gendelman,
O. V.
,
Vakakis,
A. F.
,
Bergman,
L. A.
, and
McFarland,
D. M.
, 2010, “
Asymptotic Analysis of Passive Nonlinear Suppression of Aeroelastic Instabilities of a Rigid Wing in Subsonic Flow,” SIAM J. Appl. Math.,
70(5), pp. 1655–1677.

[CrossRef]
Gendelman,
O. V.
, and
Bar,
T.
, 2010, “
Bifurcations of Self-Excitation Regimes in a Van der Pol Oscillator With a Nonlinear Energy Sink,” Physica D,
239(3–4), pp. 220–229.

[CrossRef]