0
Research Papers

A Nonclassical Finite Element Approach for the Nonlinear Analysis of Micropolar Plates

[+] Author and Article Information
R. Ansari

Department of Mechanical Engineering,
University of Guilan,
Rasht 3756, Iran
e-mail: r_ansari@guilan.ac.ir

A. H. Shakouri, M. Bazdid-Vahdati, A. Norouzzadeh

Department of Mechanical Engineering,
University of Guilan,
Rasht 3756, Iran

H. Rouhi

Department of Engineering Science,
Faculty of Technology and Engineering,
East of Guilan,
University of Guilan,
Rudsar-Vajargah 44891-63157, Iran

1Corresponding author.

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received May 15, 2015; final manuscript received August 16, 2016; published online November 22, 2016. Assoc. Editor: Mohammad Younis.

J. Comput. Nonlinear Dynam 12(1), 011019 (Nov 22, 2016) (12 pages) Paper No: CND-15-1131; doi: 10.1115/1.4034678 History: Received May 15, 2015; Revised August 16, 2016

Based on the micropolar elasticity theory, a size-dependent rectangular element is proposed in this article to investigate the nonlinear mechanical behavior of plates. To this end, a novel three-dimensional formulation for the micropolar theory with the capability of being used easily in the finite element approach is developed first. Afterward, in order to study the micropolar plates, the obtained general formulation is reduced to that based on the Mindlin plate theory. Accordingly, a rectangular plate element is developed in which the displacements and microrotations are estimated by quadratic shape functions. To show the efficiency of the developed element, it is utilized to address the nonlinear bending problem of micropolar plates with different types of boundary conditions. It is revealed that the present finite element formulation can be efficiently employed for the nonlinear modeling of small-scale plates by considering the micropolar effects.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Mindlin, R. D. , 1964, “ Micro-Structure in Linear Elasticity,” Arch. Ration. Mech. Anal., 6(1), pp. 51–78.
Mindlin, R. D. , 1965, “ Second Gradient of Strain and Surface Tension in Linear Elasticity,” Int. J. Solids Struct., 1(4), pp. 417–438. [CrossRef]
Mindlin, R. D. , and Tiersten, H. F. , 1962, “ Effects of Couple-Stresses in Linear Elasticity,” Arch. Ration. Mech. Anal., 11(1), pp. 415–448. [CrossRef]
Koiter, W. T. , 1964, “ Couple Stresses in the Theory of Elasticity,” Proc. K. Ned. Akad. Wet., (B), 67, pp. 17–44.
Lam, D. C. C. , Yang, F. , Chong, A. C. M. , Wang, J. , and Tong, P. , 2003, “ Experiments and Theory in Strain Gradient Elasticity,” J. Mech. Phys. Solids, 51(8), pp. 1477–1508. [CrossRef]
Yang, F. , Chong, A. C. M. , Lam, D. C. C. , and Tong, P. , 2002, “ Couple Stress Based Strain Gradient Theory for Elasticity,” Int. J. Solids Struct., 39(10), pp. 2731–2743. [CrossRef]
Lazopoulos, K. A. , 2009, “ On Bending of Strain Gradient Elastic Micro-Plates,” Mech. Res. Commun., 36(7), pp. 777–783. [CrossRef]
Yin, L. , Qian, Q. , Wang, L. , and Xia, W. , 2010, “ Vibration Analysis of Microscale Plates Based on Modified Couple Stress Theory,” Acta Mech. Solida Sin., 23(5), pp. 386–393. [CrossRef]
Ke, L. L. , Wang, Y. S. , and Wang, Z. D. , 2011, “ Thermal Effect on Free Vibration and Buckling of Size-Dependent Microbeams,” Physica E, 43(7), pp. 1387–1393. [CrossRef]
Akgöz, B. , and Civalek, Ö. , 2011, “ Strain Gradient Elasticity and Modified Couple Stress Models for Buckling Analysis of Axially Loaded Micro-Scaled Beams,” Int. J. Eng. Sci., 49(11), pp. 1268–1280. [CrossRef]
Wang, B. , Zhou, S. , Zhao, J. , and Chen, X. , 2011, “ Pull-In Instability Analysis of Electrostatically Actuated Microplate With Rectangular Shape,” Int. J. Precis. Eng. Manuf., 12(6), pp. 1085–1094. [CrossRef]
Wang, B. , Zhou, S. , Zhao, J. , and Chen, X. , 2011, “ Size-Dependent Pull-In Instability of Electrostatically Actuated Microbeam-Based MEMS,” J. Micromech. Microeng., 21(2), p. 027001. [CrossRef]
Wang, B. , Zhou, S. , Zhao, J. , and Chen, X. , 2012, “ Pull-In Instability of Circular Plate MEMS: A New Model Based on Strain Gradient Elasticity Theory,” Int. J. Appl. Mech., 04(01), p. 1250003. [CrossRef]
Zhang, J. , and Fu, Y. , 2012, “ Pull-In Analysis of Electrically Actuated Viscoelastic Microbeams Based on a Modified Couple Stress Theory,” Meccanica, 47(7), pp. 1649–1658. [CrossRef]
Ansari, R. , Gholami, R. , and Sahmani, S. , 2012, “ Study of Small Scale Effects on the Nonlinear Vibration Response of Functionally Graded Timoshenko Microbeams Based on the Strain Gradient Theory,” ASME J. Comput. Nonlinear Dyn., 7(3), p. 031009. [CrossRef]
Simsek, M. , Kocatürk, T. , and Akbas, S. D. , 2013, “ Static Bending of a Functionally Graded Microscale Timoshenko Beam Based on the Modified Couple Stress Theory,” Compos. Struct., 95, pp. 740–747. [CrossRef]
Akgöz, B. , and Civalek , 2013, “ Buckling Analysis of Functionally Graded Microbeams Based on the Strain Gradient Theory,” Acta Mech., 224(9), pp. 2185–2201. [CrossRef]
Ansari, R. , Gholami, R. , Mohammadi, V. , and Faghih Shojaei, M. , 2013, “ Size-Dependent Pull-In Instability of Hydrostatically and Electrostatically Actuated Circular Microplates,” ASME J. Comput. Nonlinear Dyn., 8(2), p. 021015. [CrossRef]
Belardinelli, P. , Lenci, S. , and Brocchini, M. , 2014, “ Modeling and Analysis of an Electrically Actuated Microbeam Based on Nonclassical Beam Theory,” ASME J. Comput. Nonlinear Dyn., 9(3), p. 031016. [CrossRef]
Ansari, R. , Gholami, R. , Faghih Shojaei, M. , Mohammadi, V. , and Sahmani, S. , 2015, “ Bending, Buckling and Free Vibration Analysis of Size-Dependent Functionally Graded Circular/Annular Microplates Based on the Modified Strain Gradient Elasticity Theory,” Eur. J. Mech. A/Solids, 49, pp. 251–267. [CrossRef]
Ghayesh, M. H. , Farokhi, H. , and Alici, G. , 2015, “ Internal Energy Transfer in Dynamical Behavior of Slightly Curved Shear Deformable Microplates,” ASME J. Comput. Nonlinear Dyn., 11(4), p. 041002. [CrossRef]
Ghayesh, M. H. , and Farokhi, H. , 2015, “ Coupled Nonlinear Dynamics of Geometrically Imperfect Shear Deformable Extensible Microbeams,” ASME J. Comput. Nonlinear Dyn., 11(4), p. 041001. [CrossRef]
Jabbari, G. , Shabani, R. , and Rezazadeh, G. , 2016, “ Nonlinear Vibrations of an Electrostatically Actuated Microresonator in an Incompressible Fluid Cavity Based on the Modified Couple Stress Theory,” ASME J. Comput. Nonlinear Dyn., 11(4), p. 041029. [CrossRef]
Ansari, R. , Faghih Shojaei, M. , Shakouri, A. H. , and Rouhi, H. , 2016, “ Nonlinear Bending Analysis of First-Order Shear Deformable Microscale Plates Using a Strain Gradient Quadrilateral Element,” ASME J. Comput. Nonlinear Dyn., 11(5), p. 051014. [CrossRef]
Cosserat, E. , and Cosserat, F. , 1909, Théorie des corps déformables, A. Hermann et fils, Paris, France.
Eringen, A. C. , and Suhubi, E. S. , 1964, “ Nonlinear Theory of Simple Microelastic Solid, I and II,” Int. J. Eng. Sci., 2(2), pp. 189–203. [CrossRef]
Eringen, A. C. , and Kafadar, C. B. , 1976, “ Polar Field Theories,” Continuum Physics, Vol. 4, A. C. Eringen , ed., Academic Press, New York, pp. 1–73.
Eringen, A. C. , 2012, Microcontinuum Field Theories: I. Foundations and Solids, Springer Science and Business Media, New York.
Eringen, A. C. , 1966, “ Theory of Micropolar Fluids,” J. Math. Mech., 16, p. 1.
Eringen, A. C. , 1968, Theory of Micropolar Elasticity, Vol. 2, H. Liebowitz , ed., Academic Press, New York, pp. 621–729.
Yang, J. F. C. , and Lakes, R. S. , 1982, “ Experimental Study of Micropolar and Couple Stress Elasticity in Compact Bone in Bending,” J. Biomech., 15(2), pp. 91–98. [CrossRef] [PubMed]
de Borst, R. , 1991, “ Simulation of Strain Localization: A Reappraisal of the Cosserat Continuum,” Eng. Comput., 8(4), pp. 317–332. [CrossRef]
de Borst, R. , 1993, “ A Generalisation of J2-Flow Theory for Polar Continua,” Comput. Methods Appl. Mech. Eng., 103(3), pp. 347–362. [CrossRef]
Ivanova, E. A. , Krivtsov, A. M. , Morozov, N. F. , and Firsova, A. D. , 2003, “ Description of Crystal Packing of Particles With Torque Interaction,” Mech. Solids, 38(4), pp. 76–88.
Pasternak, E. , and Mühlhaus, H. B. , 2005, “ Generalised Homogenisation Procedures for Granular Materials,” J. Eng. Math., 52(1), pp. 199–229. [CrossRef]
Grammenoudis, P. , and Tsakmakis, C. , 2005, “ Finite Element Implementation of Large Deformation Micropolar Plasticity Exhibiting Isotropic and Kinematic Hardening Effects,” Int. J. Numer. Methods Eng., 62(12), pp. 1691–1720. [CrossRef]
Bigoni, D. , and Drugan, W. J. , 2007, “ Analytical Derivation of Cosserat Moduli Via Homogenization of Heterogeneous Elastic Materials,” ASME J. Appl. Mech., 74(4), pp. 741–753. [CrossRef]
Grammenoudis, P. , and Tsakmakis, C. , 2009, “ Isotropic Hardening in Micropolar Plasticity,” Arch. Appl. Mech., 79(4), pp. 323–334. [CrossRef]
Goldberg, J. E. , Baluch, M. H. , Korman, T. , and Koh, S. L. , 1974, “ Finite Element Approach to Bending of Micropolar Plates,” Int. J. Numer. Methods Eng., 8(2), pp. 311–321. [CrossRef]
Trovalusci, P. , and Masiani, R. , 2003, “ Non-Linear Micropolar and Classical Continua for Anisotropic Discontinuous Materials,” Int. J. Solids Struct., 40(5), pp. 1281–1297. [CrossRef]
Aganović, I. , Tambača, J. , and Tutek, Z. , 2006, “ Derivation and Justification of the Models of Rods and Plates From Linearized Three-Dimensional Micropolar Elasticity,” J. Elast., 84(2), pp. 131–152. [CrossRef]
Pompei, A. , and Rigano, M. A. , 2006, “ On the Bending of Micropolar Viscoelastic Plates,” Int. J. Eng. Sci., 44(18–19), pp. 1324–1333. [CrossRef]
Jeong, J. , and Neff, P. , 2008, “ Existence, Uniqueness and Stability in Linear Cosserat Elasticity for Weakest Curvature Conditions,” Math. Mech. Solids, 15(1), pp. 78–95. [CrossRef]
Pietraszkiewicz, W. , and Eremeyev, V. , 2009, “ On Natural Strain Measures of the Non-Linear Micropolar Continuum,” Int. J. Solids Struct., 46(3–4), pp. 774–787. [CrossRef]
Kvasov, R. , and Steinberg, L. , 2013, “ Numerical Modeling of Bending of Micropolar Plates,” Thin-Walled Struct., 69, pp. 67–78. [CrossRef]
Bhattacharyya, A. , and Mukhopadhyay, B. , 2013, “ Study of Linear Isotropic Micro-Polar Plate in an Asymptotic Approach,” Comput. Math. Appl., 66(6), pp. 1047–1057. [CrossRef]
Altenbach, H. , and Eremeyev, V. A. , 2014, “ Strain Rate Tensors and Constitutive Equations of Inelastic Micropolar Materials,” Int. J. Plast., 63, pp. 3–17. [CrossRef]
Sargsyan, A. H. , and Sargsyan, S. H. , 2014, “ Dynamic Model of Micropolar Elastic Thin Plates With Independent Fields of Displacements and Rotations,” J. Sound Vib., 333(18), pp. 4354–4375. [CrossRef]
Ansari, R. , Mohammadi, V. , Faghih Shojaei, M. , and Rouhi, H. , 2015, “ Thermal Postbuckling Analysis of Nanoscale Films Based on a Non-Classical Finite Element Approach,” J. Therm. Stresses, 38(6), pp. 651–664. [CrossRef]
Ansari, R. , Faghih Shojaei, M. , Ebrahimi, F. , and Rouhi, H. , 2016, “ A Novel Size-Dependent Microbeam Element Based on Mindlin's Strain Gradient Theory,” Eng. Comput., 32(1), pp. 99–108. [CrossRef]
Ansari, R. , Faghih Shojaei, M. , and Rouhi, H. , 2015, “ Small-Scale Timoshenko Beam Element,” Eur. J. Mech. A Solids, 53, pp. 19–33. [CrossRef]
Gurtin, M. E. , and Murdoch, A. I. , 1975, “ A Continuum Theory of Elastic Material Surfaces,” Arch. Ration. Mech. Anal., 57(4), pp. 291–323. [CrossRef]
Gurtin, M. E. , and Murdoch, A. I. , 1978, “ Surface Stress in Solids,” Int. J. Solids Struct., 14(6), pp. 431–440. [CrossRef]
Altenbach, J. , Altenbach, H. , and Eremeyev, V. A. , 2010, “ On Generalized Cosserat-Type Theories of Plates and Shells: A Short Review and Bibliography,” Arch. Appl. Mech., 80(1), pp. 73–92. [CrossRef]
Li, L. , and Xie, S. , 2004, “ Finite Element Method for Linear Micropolar Elasticity and Numerical Study of Some Scale Effects Phenomena in MEMS,” Int. J. Mech. Sci., 46(11), pp. 1571–1587. [CrossRef]
Godio, M. , Stefanou, I. , Sab, K. , and Sulem, J. , 2015, “ Dynamic Finite Element Formulation for Cosserat Elastic Plates,” Int. J. Numer. Methods Eng., 101(13), pp. 992–1018. [CrossRef]
Wheel, M. A. , 2008, “ A Control Volume-Based Finite Element Method for Plane Micropolar Elasticity,” Int. J. Numer. Methods Eng., 75(8), pp. 992–1006. [CrossRef]
Pietraszkiewicz, W. , and Eremeyev, V. A. , 2009, “ On Vectorially Parameterized Natural Strain Measures of the Non-Linear Cosserat Continuum,” Int. J. Solids Struct., 46(11–12), pp. 2477–2480. [CrossRef]
Lakes, R. , 1986, “ Experimental Microelasticity of Two Porous Solids,” Int. J. Solids Struct., 22(1), pp. 55–63. [CrossRef]
Eringen, A. C. , 1967, “ Theory of Micropolar Plates,” Z. Angew. Math. Phys., 18(1), pp. 12–30. [CrossRef]
Altenbach, H. , and Eremeyev, V. A. , 2009, “ On the Linear Theory of Micropolar Plates,” Z. Angew. Math. Mech. 89(4), pp. 242–256. [CrossRef]
Chróscielewski, J. , and Witkowski, W. , 2010, “ On Some Constitutive Equations for Micropolar Plates,” Z. Angew. Math. Mech. 90(1), pp. 53–64. [CrossRef]
Chróscielewski, J. , and Witkowski, W. , 2011, “ FEM Analysis of Cosserat Plates and Shells Based on Some Constitutive Relations,” Z. Angew. Math. Mech., 91(5), pp. 400–412. [CrossRef]
Chróscielewski, J. , Pietraszkiewicz, W. , and Witkowski, W. , 2010, “ On Shear Correction Factors in the Non-Linear Theory of Elastic Shells,” Int. J. Solids Struct., 47(25–26), pp. 3537–3545. [CrossRef]
Gruttmann, F. , and Wagner, W. , 2004, “ A Stabilized One-Point Integrated Quadrilateral Reissner–Mindlin Plate Element,” Int. J. Numer. Meth. Eng., 61(13), pp. 2273–2295. [CrossRef]
Panasz, P. , and Wisniewski, K. , 2008, “ Nine-Node Shell Elements With 6 dofs/Node Based on Two-Level Approximations. Part I: Theory and Linear Tests,” Finite Elem. Anal. Des., 44(12–13), pp. 784–796. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematic view of the micropolar plate

Grahic Jump Location
Fig. 2

Rectangular micropolar plate element

Grahic Jump Location
Fig. 3

Mesh grids of elements for the SSSS micropolar plate in case I (a) before and (b) after deflection

Grahic Jump Location
Fig. 4

Variation of dimensionless maximum deflection of micropolar plates with different boundary conditions against the dimensionless length scale parameter in case I (P=500N/m2)

Grahic Jump Location
Fig. 5

Variation of dimensionless maximum deflection of micropolar plates with different boundary conditions against the dimensionless length scale parameter in case II (P=1N)

Grahic Jump Location
Fig. 6

Effect of dimensionless length scale parameter on the dimensionless transverse deflection and microrotation component of (a) SSSS and (b) CCCC micropolar plates in case I (P=500N/m2)

Grahic Jump Location
Fig. 7

Effect of dimensionless length scale parameter on the dimensionless transverse deflection and microrotation component of (a) SSSS, and (b) CCCC micropolar plates in case II (P=1 N)

Grahic Jump Location
Fig. 8

Variation of Φ2,max against the applied load for (a) SSSS and (b) CCCC micropolar plates (————: Linear, ——●—— : Nonlinear) in case I

Grahic Jump Location
Fig. 9

Variation of Φ2,max against the applied load for (a) SSSS and (b) CCCC micropolar plates (————: Linear, ——●—— : Nonlinear) in case II

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In