0
Research Papers

Reinjection Probability Density for Type-III Intermittency With Noise and Lower Boundary of Reinjection

[+] Author and Article Information
Sergio Elaskar

Professor
Aeronautical Department,
National University Cordoba,
IDIT-CONICET,
Cordoba CP 5000, Argentina
e-mail: selaskar@unc.edu.ar

Ezequiel del Rio

Professor
E.T.S.I. Aeronáuticos,
Polytechnic University Madrid,
Madrid CP 28040, Spain

Andrea Costa

Professor
Aeronautical Department,
National University Cordoba,
IATE-CONICET,
Cordoba CP 5000, Argentina

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received September 8, 2015; final manuscript received August 18, 2016; published online January 19, 2017. Assoc. Editor: D. Dane Quinn.

J. Comput. Nonlinear Dynam 12(3), 031020 (Jan 19, 2017) (11 pages) Paper No: CND-15-1284; doi: 10.1115/1.4034732 History: Received September 08, 2015; Revised August 18, 2016

In this paper, we extend a methodology developed recently to study type-III intermittency considering different values of the noise intensity and the lower boundary of reinjection (LBR). We obtain accurate analytic expressions for the reinjection probability density (RPD). The proposed RPD has a piecewise definition depending on the nonlinear behavior, the LBR value, and the noise intensity. The new RPD is a sum of exponential functions with exponent α + 2, where α is the exponent of the noiseless RPD. The theoretical results are verified with the numerical simulations.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Manneville, P. , and Pomeau, Y. , 1979, “ Intermittency and Lorenz Model,” Phys. Lett. A, 75, pp. 1–2. [CrossRef]
Manneville, P. , 1980, “ Intermittency, Self-Similarity and 1/f Spectrum in Dissipative Dynamical Systems,” J. Phys., 41(11), pp. 1235–1243. [CrossRef]
Schuster, H. , and Just, W. , 2005, Deterministic Chaos, Wiley VCH, Mörlenbach, Germany.
Nayfeh, A. , and Balachandran, B. , 1995, Applied Nonlinear Dynamics, Wiley, New York, NY.
Kaplan, H. , 1992, “ Return to Type-I Intermittency,” Phys. Rev. Lett., 68(5), pp. 553–557. [CrossRef] [PubMed]
Price, T. , and Mullin, P. , 1991, “ An Experimental Observation of a New Type of Intermittency,” Phys. D, 48(1), pp. 29–52. [CrossRef]
Platt, N. , Spiegel, E. , and Tresser, C. , 1993, “ On-Off Intermittency: A Mechanism for Bursting,” Phys. Rev. Lett., 70(3), pp. 279–282. [CrossRef] [PubMed]
Pikovsky, A. , Osipov, G. , Rosenblum, M. , Zaks, M. , and Kurths, J. , 1997, “ Attractor-Repeller Collision and Eyelet Intermittency at the Transition to Phase Synchronization,” Phys. Rev. Lett., 79(1), pp. 47–50. [CrossRef]
Lee, K. , Kwak, Y. , and Lim, T. , 1998, “ Phase Jumps Near a Phase Synchronization Transition in Systems of Two Coupled Chaotic Oscillators,” Phys. Rev. Lett., 81(2), pp. 321–324. [CrossRef]
Hramov, A. , Koronovskii, A. , Kurovskaya, M. , and Boccaletti, S. , 2006, “ Ring Intermittency in Coupled Chaotic Oscillators at the Boundary of Phase Synchronization,” Phys. Rev. Lett., 97(11), p. 114101. [CrossRef] [PubMed]
Dubois, M. , Rubio, M. , and Berge, P. , 1983, “ Experimental Evidence of Intermittencies Associated With a Subharmonic Bifurcation,” Phys. Rev. Lett., 16, pp. 1446–1449. [CrossRef]
Stavrinides, S. , Miliou, A. , Laopoulos, T. , and Anagnostopoulos, A. , 2008, “ The Intermittency Route to Chaos of an Electronic Digital Oscillator,” Int. J. Bifurcation Chaos, 18(05), pp. 1561–1566. [CrossRef]
Sanmartin, J. , Lopez-Rebollal, O. , del Rio, E. , and Elaskar, S. , 2004, “ Hard Transition to Chaotic Dynamics in Alfvén Wave Fronts,” Phys. Plasmas, 11(5), pp. 2026–2035. [CrossRef]
Sanchez-Arriaga, G. , Sanmartin, J. , and Elaskar, S. , 2007, “ Damping Models in the Truncated Derivative Nonlinear Schrödinger Equation,” Phys. Plasmas, 14(8), p. 082108. [CrossRef]
Pizza, G. , Frouzakis, G. , and Mantzaras, J. , 2012, “ Chaotic Dynamics in Premixed Hydrogen/Air Channel Flow Combustion,” Combust. Theor. Model, 16(2), pp. 275–299. [CrossRef]
Stan, C. , Cristescu, C. , and Dimitriu, D. , 2010, “ Analysis of the Intermittency Behavior in a Low-Temperature Discharge Plasma by Recurrence Plot Quantification,” Phys. Plasmas, 17(4), p. 042115. [CrossRef]
Chian, A. , 2007, Complex Systems Approach to Economic Dynamics (Lecture Notes in Economics and Mathematical Systems, Vol. 592), Springer-Verlag, Berlin.
Zebrowski, J. , and Baranowski, R. , 2004, “ Type I Intermittency in Nonstationary Systems—Models and Human Heart Rate Variability,” Phys. A, 336, pp. 74–86. [CrossRef]
Paradisi, P. , Allegrini, P. , Gemignani, A. , Laurino, M. , Menicucci, D. , and Piarulli, A. , 2012, “ Scaling and Intermittency of Brains Events as a Manifestation of Consciousness,” AIP Conf. Proc., 1510, pp. 151–161.
Laugesen, J. , Carlsson, N. , Mosckilde, E. , and Bountis, T. , 1997, “ Anomalous Statistics for Type-III Intermittency,” Open Syst. Inf. Dyn., 4(4), pp. 393–405. [CrossRef]
Elaskar, S. , del Rio, E. , and Donoso, J. , 2011, “ Reinjection Probability Density in Type-III Intermittency,” Phys. A, 390(15), pp. 2759–2768. [CrossRef]
Rosso, O. , Larrondo, H. , Martin, M. , Plastino, A. , and Fuentes, M. , 2007, “ Distinguishing Noise From Chaos,” Phys. Rev. Lett., 99(15), p. 154102. [CrossRef] [PubMed]
Hirsch, E. , Huberman, B. , and Scalapino, D. , 1982, “ Theory of Intermittency,” Phys. Lett. A, 25, pp. 519–532.
Koronovskii, A. , and Hramov, A. , 2008, “ Type-II Intermittency Characteristics in the Presence of Noise,” Eur. Phys. J. B, 62(4), pp. 447–452. [CrossRef]
Kye, W. , Rim, S. , Kim, C. , Lee, J. , Ryu, J. , Yeom, B. , and Park, Y. , 2003, “ Experimental Observation of Characteristic Relations of Type-III Intermittency in the Presence of Noise in a Simple Electronic Circuit,” Phys. Rev. E, 68(3), p. 036203. [CrossRef]
del Rio, E. , Sanjuan, M. , and Elaskar, S. , 2012, “ Effect of Noise on the Reinjection Probability Density in Intermittency,” Commun. Nonlinear Sci. Numer. Simul., 17(9), pp. 3587–3596. [CrossRef]
Elaskar, S. , del Rio, E. , Krause, G. , and Costa, A. , 2014, “ Effect of the Lower Boundary of Reinjection and Noise in Type-II Intermittency,” Nonlinear Dyn., 79(2), pp. 1411–1424. [CrossRef]
Kye, W. , and Kim, C. , 2000, “ Characteristic Relations of Type-I Intermittency in Presence of Noise,” Phys. Rev. E, 62(5), pp. 6304–6307. [CrossRef]
del Rio, E. , and Elaskar, S. , 2010, “ New Characteristic Relation in Type-II Intermittency,” Int. J. Bifurcation Chaos, 20(04), pp. 1185–1191. [CrossRef]
Elaskar, S. , and del Rio, E. , 2012, “ Intermittency Reinjection Probability Function With and Without Noise Effects,” Latest Trends in Circuits, Automatics Control and Signal Processing, WSEAS, Barcelona, Spain, pp. 145–154.
del Rio, E. , Elaskar, S. , and Makarov, V. , 2013, “ Theory of Intermittency Applied to Classical Pathological Cases,” Chaos, 23, p. 033112. [CrossRef] [PubMed]
del Rio, E. , Elaskar, S. , and Donoso, J. , 2014, “ Laminar Length and Characteristic Relation in Type-I Intermittency,” Commun. Nonlinear Sci. Numer. Simul., 19(4), pp. 967–976. [CrossRef]
Krause, G. , Elaskar, S. , and del Rio, E. , 2014, “ Type-I Intermittency With Discontinuous Reinjection Probability Density in a Truncation Model of the Derivative Nonlinear Schrödinger Equation,” Nonlinear Dyn., 77(3), pp. 455–466. [CrossRef]
Krause, G. , Elaskar, S. , and del Rio, E. , 2014, “ Noise Effect on Statistical Properties of Type-I Intermittency,” Phys. A, 402, pp. 318–329. [CrossRef]
del Rio, E. , and Elaskar, S. , 2016, “ The Intermittency Route to Chaos,” Handbook of Applications of Chaos Theory, C. H. Skiadas and C. Skiadas , eds., CRC Press Book, Boca Raton, FL, pp. 3–20.
Elaskar, S. , and del Rio, E. , 2016, New Advances in Chaotic Intermittency and Applications, Springer, Berlin.

Figures

Grahic Jump Location
Fig. 1

Left: Map (1). The parameters are ε = 0.01, a = 1, 0, and b = 1.1. Right: Map (2). The parameters are ε = 0.1 and b = 0.1.

Grahic Jump Location
Fig. 2

Map (9). Left: M(x) from the numerical simulations. The darker (0.33 < x ≤ 0.6) line indicates the data used to calculate the exponent α. Right: Theoretical and numerical RPD functions. The points correspond to numerical data, and the result of Eq. (13) is plotted as a solid line. Parameters: ε = 0.0005, c = 0.6, a = 1.1, b = 1.35, and K = 10.5833.

Grahic Jump Location
Fig. 3

Map (10). Left: M(x) from the numerical simulations. The darker (0.65 < x ≤ 1) line indicates the data used to calculate the exponent α. Right: Theoretical and numerical RPD function. The points correspond to numerical data and the result of Eq. (14) is plotted as a solid line. Parameters: ε = 0.005, c = 1.0, σ = 0.3, b = 0.05, and K≅0.

Grahic Jump Location
Fig. 4

(K+1)σ<xs and 0 < K ≤ 1. Left: M(x) function; the darker (0.75 < x ≤ 1) line shows the data used to calculate the exponent α in Eq. (8). Right: NRPD function; the numerical data and theoretical result are represented by points and line, respectively. Parameters: c = 1, ε = 0.005, σ = 0.2, xs≅0.3181, and K≅0.5366.

Grahic Jump Location
Fig. 5

(K+1)σ<xs and 1 < K ≤ 2. Left: M(x) function; the darker (1.75 < x ≤ 2) line shows the dataused to calculate the exponent α. Right: NRPD function; the points represent the numerical data and the line is the analytical NRPD. Parameters: c = 2, ε = 0.005, σ = 0.2, xs≅0.8076, and K≅1.1750.

Grahic Jump Location
Fig. 6

(K+1)σ≥xs, σ<xs, and 0 < K ≤ 1. Left: M(x) function; the darker (0.65 < x ≤ 1) line indicates the data used to calculate the exponent α. Center: NRPD function for αr =−0.656. Right: Comparison of the NRPD functions for αr = −0.656 and α = −0.61. Parameters: c = 1, ε = 0.005, σ = 0.18, xs≅0.194, and K≅0.3459.

Grahic Jump Location
Fig. 7

(K+1)σ≥xs, σ<xs, and 0 < K ≤ 1. Left: M(x) function. Right: NRPD function. Parameters: c = 1, ε = 0.005, σ = 0.18, xs≅0.194, and K≅0.3459.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In