Selig,
J. M.
, 2005, Geometric Fundamentals of Robotics (Monographs in Computer Science Series),
Springer-Verlag,
New York.

Shabana,
A. A.
, 2013, Dynamics of Multibody Systems, 4th ed., Cambridge University Press, New York.

Müller,
A.
, 2016, “
A Note on the Motion Representation and Configuration Update in Time Stepping Schemes for the Constrained Rigid Body,” BIT Numer. Math.,
56(3), pp. 995–1015.

[CrossRef]
Celledoni,
E.
, and
Owren,
B.
, 1999, “
Lie Group Methods for Rigid Body Dynamics and Time Integration on Manifolds,” Comput. Methods Appl. Mech. Eng.,
192(3–4), pp. 421–438.

[CrossRef]
Iserles,
A.
,
Munthe-Kaas,
H. Z.
,
Nørsett,
S. P.
, and
Zanna,
A.
, 2000, “
Lie-Group Methods,” Acta Numer., Vol. 9, pp. 215–365.

Krysl,
P.
, and
Endres,
L.
, 2005, “
Explicit Newmark/Verlet Algorithm for Time Integration of the Rotational Dynamics of Rigid Bodies,” Int. J. Numer. Methods Eng.,
62(15), pp. 2154–2177.

[CrossRef]
Munthe-Kaas,
H.
, 1999, “
High Order Runge–Kutta Methods on Manifolds,” Appl. Numer. Math.,
29(1), pp. 115–127.

[CrossRef]
Owren,
B.
, and
Marthinsen,
A.
, 1999, “
Runge–Kutta Methods Adapted to Manifolds and Based on Rigid Frames,” BIT,
39(1), pp. 116–142.

[CrossRef]
Park,
J.
, and
Chung,
W. K.
, 2005, “
Geometric Integration on Euclidean Group With Application to Articulated Multibody Systems,” IEEE Trans. Rob. Autom.,
21(5), pp. 850–863.

[CrossRef]
Simo,
J. C.
, and
Wong,
K. K.
, 1991, “
Unconditionally Stable Algorithms for Rigid Body Dynamics That Exactly Preserve Energy and Momentum,” Int. J. Numer. Methods Eng.,
31(1), pp. 19–52.

[CrossRef]
Terze,
Z.
,
Müller,
A.
, and
Zlatar,
D.
, 2014, “
Lie-Group Integration Method for Constrained Multibody Systems in State Space,” Multibody Syst. Dyn.,
34(3), pp. 275–305.

[CrossRef]
Terze,
Z.
,
Müller,
A.
, and
Zlatar,
D.
, 2015, “
An Angular Momentum and Energy Conserving Lie-Group Integration Scheme for Rigid Body Rotational Dynamics Originating From Störmer-Verlet Algorithm,” ASME J. Comput. Nonlinear Dyn.,
10(5), p. 051005.

[CrossRef]
Darboux,
G.
, 1887, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitesimal, Vol. 4, Gautiers-Villars,
Paris, France.

Sattinger,
D. H.
, and
Weaver,
O. L.
, 1993, Lie Groups and Algebras With Applications to Physics, Geometry and Mechanics,
Springer, New York.

Marsden,
J.
, 1997, Introduction to Mechanics and Symmetry,
Springer-Verlag, New York.

Brüls,
O.
,
Cardona,
A.
, and
Arnold,
M.
, 2012, “
Lie Group Generalized-Alpha Time Integration of Constrained Flexible Multibody Systems,” Mech. Mach. Theory,
48, pp. 121–137.

[CrossRef]
Müller,
A.
, and
Terze,
Z.
, 2014, “
The Significance of the Configuration Space Lie Group for the Constraint Satisfaction in Numerical Time Integration of Multibody Systems,” Mech. Mach. Theory,
82, pp. 173–202.

[CrossRef]
Altmann,
S. L.
, 1986, Rotations, Quaternions, and Double Groups,
Oxford University Press, New York.

Borri,
M.
,
Mello,
F.
, and
Atluri,
S. N.
, 1990, “
Variational Approaches for Dynamics and Time-Finite-Elements: Numerical Studies,” Comput. Mech.,
7(1), pp. 49–76.

[CrossRef]
McCarthy,
J. M.
, 1990, Introduction to Theoretical Kinematics,
The MIT Press,
Cambridge, MA.

Géradin,
M.
, and
Rixen,
D.
, 1995, “
Parametrization of Finite Rotations in Computational Dynamics: A Review,” Rev. Eur. Élém.,
4(5–6), pp. 497–553.

Veldkamp,
G. R.
, 1976, “
On the Use of Dual Numbers, Vectors and Matrices in Instantaneous, Spatial Kinematics,” Mech. Mach. Theory,
11(2), pp. 141–156.

[CrossRef]
Murray,
R. M.
,
Li,
Z.
, and
Sastry,
S. S.
, 1993, A Mathematical Introduction to Robotic Manipulation,
CRC Press, Boca Raton, FL.

Helgason,
S.
, 1978, Differential Geometry, Lie Groups, and Symmetric Spaces,
Academic Press,
San Diego, CA.

Betsch,
P.
, and
Siebert,
R.
, 2009, “
Rigid Body Dynamics in Terms of Quaternions: Hamiltonian Formulation and Conserving Numerical Integration,” Int. J. Numer. Methods Eng.,
79(4), pp. 444–473.

[CrossRef]
Siminovitch,
D.
, 1997, “
Rotations in NMR: Part I. Euler–Rodrigues Parameter and Quaternions,” Concepts Magn. Reson.,
9(3), pp. 149–171.

[CrossRef]
Müller,
A.
, 2010, “
Group Theoretical Approaches to Vector Parameterization of Rotations,” J. Geom. Symmetry Phys.,
19, pp. 43–72.

Tsiotras,
P.
,
Junkins,
J.
, and
Schaub,
H.
, 1997, “
Higher Order Cayley Transforms With Applications to Attitude Representations,” J. Guid., Control, Dyn.,
20(3), pp. 528–534.

[CrossRef]
Milenkovic,
V.
, 1982, “
Coordinates Suitable for Angular Motion Synthesis in Robots,” Robot VI Conference, Detroit, MI, Society of Manufacturing Engineers, Dearborn, MI, Mar. 2–4, pp. 407–420.

Bauchau,
O. A.
, and
Trainelli,
L.
, 2003, “
The Vectorial Parameterization of Rotation,” Nonlinear Dyn.,
32(1), pp. 71–92.

[CrossRef]
Bauchau,
O. A.
, 2011, Flexible Multibody Dynamics,
Springer, Dortrecht, Heidelberg, New York.

Schaub,
H.
, and
Junkins,
J. L.
, 1995, “
Stereographic Orientation Parameters for Attitude Dynamics: A Generalization of the Rodrigues Parameters,” J. Aeronautical Sci.,
44(1), pp. 1–19.

Magnus,
W.
, 1954, “
On the Exponential Solution of Differential Equations for a Linear Operator,” Commun. Pure Appl. Math.,
7(4), pp. 649–673.

[CrossRef]
Ibrahimbegović,
A.
,
Frey,
F.
, and
Kožar,
I.
, 1995, “
Computational Aspects of Vector-Like Parametrization of Three-Dimensional Finite Rotations,” Int. J. Numer. Methods Eng.,
38(21), pp. 3653–3673.

[CrossRef]
Andrle,
M. S.
, and
Crassidis,
J. L.
, 2013, “
Geometric Integration of Quaternions,” J. Guid., Control, Dyn.,
36(6), pp. 1762–1767.

[CrossRef]
Terze,
Z.
,
Müller,
A.
, and
Zlatar,
D.
, 2016, “
Singularity-Free Time Integration of Rotational Quaternions Using Non-Redundant Ordinary Differential Equations,” Multibody Syst. Dyn.,
37(3), pp. 1–25.

Selig,
J. M.
, 2007, “
Cayley Maps for SE(3),” 12th IFToMM World Congress, Besancon, France, June 18–21.

Brodsky,
V.
, and
Shoham,
M.
, 1999, “
Dual Numbers Representation of Rigid Body Dynamics,” Mech. Mach. Theory,
34(5), pp. 693–718.

[CrossRef]
Cohen,
A.
, and
Shoham,
M.
, 2015, “
Application of Hyper-Dual Numbers to Multibody Kinematics,” ASME J. Mech. Rob.,
8(1), p. 011015.

Dimentberg,
F. M.
, 1965, The Screw Calculus and Its Application in Mechanics,
Nauka,
Moscow (Clearinghouse for Federal and Scientific Technical Information), Russia.

Rico Martinez,
J. M.
, and
Duffy,
J.
, 1993, “
The Principle of Transference: History, Statement and Proof,” Mech. Mach. Theory,
28(1), pp. 165–177.

[CrossRef]
Rooney,
J.
, 1975, “
On the Principle of Transference,” Fourth World Congress on the Theory of Machines and Mechanisms, Newcastle upon Tyne, England, Sept., pp. 1089–1094.

Husty,
M.
, and
Schröcker,
H.-P.
, 2010, “
Algebraic Geometry and Kinematics,” Nonlinear Computational Geometry, (The IMA Volumes in Mathematics and Its Applications, Vol. 151), Springer, New York, pp. 85–107.

Bauchau,
O. A.
, and
Choi,
J. Y.
, 2003, “
The Vector Parameterization of Motion,” Nonlinear Dyn.,
33(2), pp. 165–188.

[CrossRef]