0
Research Papers

Stabilization of a Fractional-Order Nonlinear Brushless Direct Current Motor

[+] Author and Article Information
Sunhua Huang

Department of Electrical Engineering,
Northwest A&F University,
Yangling 712100, Shaanxi, China

Bin Wang

Department of Electrical Engineering,
Northwest A&F University,
Yangling 712100, Shaanxi, China
e-mail: binwang@nwsuaf.edu.cn

1Corresponding author.

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received April 18, 2016; final manuscript received October 7, 2016; published online January 20, 2017. Assoc. Editor: Gabor Stepan.

J. Comput. Nonlinear Dynam 12(4), 041005 (Jan 20, 2017) (6 pages) Paper No: CND-16-1198; doi: 10.1115/1.4034997 History: Received April 18, 2016; Revised October 07, 2016

This paper describes the stabilization of a fractional-order nonlinear brushless DC motor (BLDCM) with the Caputo derivative. Based on the Laplace transform, a Mittag-Leffler function, Jordan decomposition, and Grönwall's inequality, sufficient conditions are proposed that ensure the local stabilization of a BLDCM as fractional-order α: 0<α1 is proposed. Then, numerical simulations are presented to show the feasibility and validity of the designed method. The proposed scheme is simpler and easier to implement than previous schemes.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Wen, X. J. , Wu, Z. M. , and Lu, J. G. , 2008, “ Stability Analysis of a Class of Nonlinear Fractional-Order Systems,” IEEE Trans. Circuits Syst. II-Express Briefs, 55(11), pp. 1178–1182. [CrossRef]
Wang, J. R. , and Zhou, Y. , 2012, “ Mittag-Leffler–Ulam Stabilities of Fractional Evolution Equations,” Appl. Math. Lett., 25(4), pp. 723–728. [CrossRef]
Bhrawy, A. H. , and Alofi, A. S. , 2013, “ The Operational Matrix of Fractional Integration for Shifted Chebyshev Polynomials,” Appl. Math. Lett., 26(1), pp. 25–31. [CrossRef]
Huang, S. H. , Zhang, R. F. , and Chen, D. Y. , 2016, “ Stability of Nonlinear Fractional-Order Time Varying Systems,” ASME J. Comput. Nonlinear Dyn., 11(3), p. 031007. [CrossRef]
Qian, D. L. , Li, C. P. , Agarwal, R. P. , and Wong, P. J. Y. , 2010, “ Stability Analysis of Fractional Differential System With Riemann–Liouville Derivative,” Math. Comput. Modell., 52(5–6), pp. 862–874. [CrossRef]
Podlubny, I. , 1999, “ Fractional-Order Systems and PI-Lambda-D-Mu-Controllers,” IEEE Trans. Autom. Control, 44(1), pp. 208–214. [CrossRef]
Li, H. , and Haldane, F. D. M. , 2008, “ Entanglement Spectrum as a Generalization of Entanglement Entropy: Identification of Topological Order in Non-Abelian Fractional Quantum Hall Effect States,” Phys. Rev. Lett., 101(1), p. 010504. [CrossRef] [PubMed]
Bhrawy, A. H. , and Al-Shomrani, M. M. , 2012, “ A Shifted Legendre Spectral Method for Fractional-Order Multi-Point Boundary Value Problems,” Adv. Differ. Equations, 2012, p. 8. [CrossRef]
Bhrawy, A. H. , Baleanu, D. , and Assas, L. , 2014, “ Efficient Generalized Laguerre-Spectral Methods for Solving Multi-Term Fractional Differential Equations on the Half Line,” J. Vib. Control, 20(7), pp. 973–985. [CrossRef]
Chen, D. Y. , Zhang, R. F. , Liu, X. Z. , and Ma, X. Y. , 2014, “ Fractional Order Lyapunov Stability Theorem and Its Applications in Synchronization of Complex Dynamical Networks,” Commun. Nonlinear Sci. Numer. Simul., 19(12), pp. 4105–4121. [CrossRef]
Yu, J. M. , Hu, H. , Zhou, S. B. , and Lin, X. R. , 2013, “ Generalized Mittag-Leffler Stability of Multi-Variables Fractional Order Nonlinear Systems,” Automatica, 49(6), pp. 1798–1803. [CrossRef]
Xu, Y. , Li, Y. G. , and Liu, D. , 2014, “ Response of Fractional Oscillators With Viscoelastic Term Under Random Excitation,” ASME J. Comput. Nonlinear Dyn., 9(3), p. 031015. [CrossRef]
Sun, H. H. , Abdelwahad, A. A. , and Onaral, B. , 1984, “ Linear Approximation of Transfer Function With a Pole of Fractional Order,” IEEE Trans. Autom. Control, 29(5), pp. 441–444. [CrossRef]
Bhrawy, A. H. , 2016, “ A Jacobi Spectral Collocation Method for Solving Multi-Dimensional Nonlinear Fractional Sub-Diffusion Equations,” Numer. Algorithms, 73(1), pp. 91–113.
Bhrawy, A. H. , 2016, “ A New Spectral Algorithm for Time-Space Fractional Partial Differential Equations With Subdiffusion and Superdiffusion,” Proc. Rom. Acad., Ser. A: Math. Phys. Tech. Sci. Inf. Sci., 17(1), pp. 39–47.
Xin, B. G. , and Zhang, J. Y. , 2015, “ Finite-Time Stabilizing a Fractional-Order Chaotic Financial System With Market Confidence,” Nonlinear Dyn., 79(2), pp. 1399–1409. [CrossRef]
Lazopoulos, K. A. , 2006, “ Non-Local Continuum Mechanics and Fractional Calculus,” Mech. Res. Commun., 33(6), pp. 753–757. [CrossRef]
Kusnezov, D. , Bulgac, A. , and Dang, G. D. , 1999, “ Quantum Levy Processes and Fractional Kinetics,” Phys. Rev. Lett., 82(6), pp. 1136–1139. [CrossRef]
Dumitru, B. , Richard, L. M. , Sachin, B. , and Varsha, D. G. , 2015, “ Chaos in the Fractional Order Nonlinear Bloch Equation With Delay,” Commun. Nonlinear Sci. Numer. Simul., 25(1–3), pp. 41–49.
Kiani, B. A. , Fallahi, K. , Pariz, N. , and Leung, H. , 2009, “ A Chaotic Secure Communication Scheme Using Fractional Chaotic Systems Based on an Extended Fractional Kalman Filter,” Commun. Nonlinear Sci. Numer. Simul., 14(3), pp. 863–879. [CrossRef]
Muthukumar, P. , Balasubramaniam, P. , and Ratnavelu, K. , 2014, “ Synchronization of a Novel Fractional Order Stretch-Twist-Fold (STF) Flow Chaotic System and Its Application to a New Authenticated Encryption Scheme (AES),” Nonlinear Dyn., 77(4), pp. 1547–1559. [CrossRef]
Aghababa, M. , 2012, “ Finite-Time Chaos Control and Synchronization of Fractional-Order Chaotic (Hyperchaotic) Systems Using Fractional Nonsingular Terminal Sliding Mode Technique,” Nonlinear Dyn., 69(1–2), pp. 247–261. [CrossRef]
Wang, B. , Xue, J. Y. , Wu, F. J. , and Zhum, D. L. , 2016, “ Stabilization Conditions for Fuzzy Control of Uncertain Fractional Order Nonlinear Systems With Random Disturbances,” IET Control Theory Appl., 10(6), pp. 637–647. [CrossRef]
Balasubramaniam, P. , and Tamilalagan, P. , 2015, “ Approximate Controllability of a Class of Fractional Neutral Stochastic Integro-Differential Inclusions With Infinite Delay by Using Mainardi's Function,” Appl. Math. Comput., 256, pp. 232–246.
Bhrawy, A. H. , and Zaky, M. A. , 2016, “ Shifted Fractional-Order Jacobi Orthogonal Functions: Application to a System of Fractional Differential Equations,” Appl. Math. Modell., 40(2), pp. 832–845. [CrossRef]
Hemati, N. , and Leu, M. C. , 1992, “ A Complete Model Characterization of Brushless DC Motors,” IEEE Trans. Ind. Appl., 28(1), pp. 172–180. [CrossRef]
Hemati, N. , 1994, “ Strange Attractors in Brushless DC Motors,” IEEE Trans. Circuits Syst. I, 41(1), pp. 40–45. [CrossRef]
Ge, Z. M. , Chang, C. M. , and Chen, Y. S. , 2006, “ Anti-Control of Chaos Single Time Scale Brushless DC Motors and Chaos Synchronization of Different Order System,” Chaos, Solitons Fractals, 27(5), pp. 1298–1315. [CrossRef]
Wei, D. Q. , Wan, L. , Luo, X. S. , Zeng, S. Y. , and Zhang, B. , 2014, “ Global Exponential Stabilization for Chaotic Brushless DC Motors With a Single Input,” Nonlinear Dyn., 77(1–2), pp. 209–212. [CrossRef]
Zhou, P. , Bai, R. J. , and Zheng, J. M. , 2015, “ Stabilization of a Fractional-Order Chaotic Brushless DC Motor Via a Single Input,” Nonlinear Dyn., 82(1–2), pp. 519–525. [CrossRef]
Ge, Z. M. , and Chang, C. M. , 2004, “ Chaos Synchronization and Parameters Identification of Single Time Scale Brushless DC Motors,” Chaos, Solitons Fractals, 20(4), pp. 883–903. [CrossRef]
Liu, G. , Cui, C. J. , Wang, K. , Han, B. C. , and Zheng, S. Q. , 2016, “ Sensorless Control for High-Speed Brushless DC Motor Based on the Line-to-Line Back EMF,” IEEE Trans. Power Electron., 31(7), pp. 4669–4683. [CrossRef]
Wang, W. , Jin, R. J. , and Jiang, J. P. , 2007, “ Optimal State Feedback Control of Brushless Direct-Current Motor Drive Systems Based on Lyapunov Stability Criterion,” J. Zhejiang Univ., Sci., A, 8(12), pp. 1889–1893. [CrossRef]
Zhang, F. R. , and Li, C. P. , 2011, “ Stability Analysis of Fractional Differential Systems With Order Lying in (1, 2),” Adv. Differ. Equations, 2011, p. 213485.
Zhou, P. , Cai, H. , and Yang, C. D. , 2016, “ Stabilization of the Unstable Equilibrium Points of the Fractional-Order BLDCM Chaotic System in the Sense of Lyapunov by a Single-State Variable,” Nonlinear Dyn., 84(4), pp. 2357–2361. [CrossRef]
Zheng, W. J. , Luo, Y. , Chen, Y. Q. , and Pi, Y. G. , 2016, “ Fractional-Order Modeling of Permanent Magnet Synchronous Motor Speed Servo System,” J. Vib. Control, 22(9), pp. 2255–2280. [CrossRef]
Xu, B. B. , Chen, D. Y. , Zhang, H. , and Wang, F. F. , 2015, “ Modeling and Stability Analysis of a Fractional-Order Francis Hydro-Turbine Governing System,” Chaos, Solitons Fractals, 75, pp. 50–61. [CrossRef]
Bao, H. B. , Park, J. H. , and Cao, J. D. , 2016, “ Synchronization of Fractional-Order Complex-Valued Neural Networks With Time Delay,” Neural Networks, 81, pp. 16–28. [CrossRef] [PubMed]
Hei, X. D. , and Wu, R. C. , 2016, “ Finite-Time Stability of Impulsive Fractional-Order Systems With Time-Delay,” Appl. Math. Modell., 40(7–8), pp. 4285–4290. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Chaotic vibration in the fractional-order BLDCM (19) with α=0.97 : (a) xd-xq-xa, (b) xd-t, (c) xq-t, and (d) xa-t

Grahic Jump Location
Fig. 2

The controlled fractional-order BLDCM system (41) with α=0.97

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In