0
Research Papers

Stabilization of Fractional-Order Systems Subject to Saturation Element Using Fractional Dynamic Output Feedback Sliding Mode Control

[+] Author and Article Information
Esmat Sadat Alaviyan Shahri

Faculty of Electrical and Robotic Engineering,
Shahrood University of Technology,
Shahrood 36199–95161, Iran
e-mail: ss_alaviyan@yahoo.com

Alireza Alfi

Faculty of Electrical and Robotic Engineering,
Shahrood University of Technology,
Shahrood 36199–95161, Iran
e-mail: a_alfi@shahroodut.ac.ir

J. A. Tenreiro Machado

Institute of Engineering,
Polytechnic of Porto,
Department of Electrical Engineering,
Rua Dr. António Bernardino de Almeida,
Porto 4249-015, Portugal
e-mail: jtenreiromachado@gmail.com

1Correspondence author.

Contributed by the Design Engineering Division of ASME for publication in the JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received June 14, 2016; final manuscript received October 25, 2016; published online December 5, 2016. Assoc. Editor: Dumitru Baleanu.

J. Comput. Nonlinear Dynam 12(3), 031014 (Dec 05, 2016) (6 pages) Paper No: CND-16-1274; doi: 10.1115/1.4035196 History: Received June 14, 2016; Revised October 25, 2016

This paper addresses the design of a robust fractional-order dynamic output feedback sliding mode controller (FDOF-SMC) for a general class of uncertain fractional systems subject to saturation element. The control law is composed of two components, one linear and one nonlinear. The linear component corresponds to the fractional-order dynamics of the FDOF-SMC, while the nonlinear component is associated with the switching control algorithm. The closed-loop system exhibits asymptotical stability and the system states approach the sliding surface in a finite time. In order to design the controller, a linear matrix inequality (LMI)-based procedure is also derived. Simulation results demonstrate the feasibility of the FDOF-SMC strategy.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Sabatier, J. , Agrawal, O. P. , and Tenreiro Machado, J. A. , 2007, Advances in Fractional Calculus Theoretical Developments and Applications in Physics and Engineering, Springer, Berlin.
Das, S. , “Fractional Function Calculus, 2011, Springer-Verlag, Berlin.
Tenreiro Machado, J. A. , Galhano, A. M. S. F. , and Trujillo, J. J. , 2014, “ On Development of Fractional Calculus During the Last Fifty Years,” Scientometrics, 98(1), pp. 577–582. [CrossRef]
Valério, D. , Tenreiro Machado, J. A. , and Kiryakova, V. , 2014, “ Some Pioneers of the Applications of Fractional Calculus,” Fractional Calculus Appl. Anal., 17(2), pp. 552–578.
Valério, D. , Trujillo, J. , Rivero, M. , Tenreiro Machado, J. A. , and Baleanu, D. , 2013, “ Fractional Calculus: A Survey of Useful Formulas,” Eur. Phys. J. Spec. Top., 222(8), pp. 1827–1846. [CrossRef]
Golmankhaneh, A. K. , Arefi, R. , and Baleanu, D. , 2015, “ Synchronization in a Nonidentical Fractional Order of a Proposed Modified System,” J. Vib. Control, 21(6), pp. 1154–1161. [CrossRef]
A. K. Golmankhaneh , Arefi, R. , and Baleanu, D. , 2013, “ The Proposed Modified Liu System With Fractional Order,” Adv. Math. Phys., 2013, p. 186037. [CrossRef]
Wu, G. C. , and Baleanu, D. , 2014, “ Chaos Synchronization of the Discrete Fractional Logistic Map,” Signal Process., 102, pp. 96–99. [CrossRef]
Li, Y. , Chen, Y. Q. , and Podlubny, I. , 2010, “ Stability of Fractional-Order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag-Leffler Stability,” Comput. Math. Appl., 59(5), pp. 1810–1821. [CrossRef]
Monje, C. A. , Chen, Y. , Vinagre, B. M. , Xue, D. , and Feliu, V. , 2010, Fractional-Order Systems and Controls Fundamentals and Applications, Springer, Berlin.
Delavari, H. , Baleanu, D. , and Sadati, J. , 2012, “ Stability Analysis of Caputo Fractional-Order Nonlinear System Revisited,” Nonlinear Dyn., 67(4), pp. 2433–2439. [CrossRef]
Aguila-Camacho, N. , Duarte-Mermoud, M. A. , and Gallegos, J. A. , 2014, “ Lyapunov Functions for Fractional Order Systems,” Commun. Nonlinear Sci. Numer. Simul., 19(9), pp. 2951–2957. [CrossRef]
Rivero, M. , Rogosin, S. V. , Tenreiro Machado, J. A. , and Trujillo, J. J. , “ Stability of Fractional Order Systems,” Math. Probl. Eng., 2013, p. 356215.
Wu, G. C. , Baleanu, D. , Xie, H. P. , and Chen, F. L. , 2016, “ Chaos Synchronization of Fractional Chaotic Maps Based on the Stability Conditions,” Phys. A, 460, pp. 374–383. [CrossRef]
Duarte-Mermoud, M. A. , Aguila-Camacho, N. J. , Gallegos, A. , and Castro-Linares, R. , 2015, “ Using General Quadratic Lyapunov Functions to Prove Lyapunov Uniform Stability for Fractional Order Systems,” Commun. Nonlinear Sci. Numer. Simul., 22(1–3), pp. 650–659. [CrossRef]
Razminia, A. , Baleanu, D. , and Johari Majd, V. , 2013, “ Conditional Optimization Problems: Fractional Order Case,” J. Optim. Theory Appl., 156(1), pp. 45–55. [CrossRef]
Tenreiro Machado, J. A. , 2010, “ Optimal Tuning of Fractional Controllers Using Genetic Algorithms,” Nonlinear Dyn., 62(1), pp. 447–452. [CrossRef]
Charef, A. , Assabaa, M. , Ladaci, S. , and Loiseau, J. J. , 2013, “ Fractional Order Adaptive Controller for Stabilised Systems Via High-Gain Feedback,” IET Control Theory Appl., 7(6), pp. 822–828. [CrossRef]
Ladaci, S. , and Charef, A. , 2006, “ On Fractional Adaptive Control,” Nonlinear Dyn., 43(4), pp. 365–378. [CrossRef]
Tenreiro Machado, J. A. , 2012, “ The Effect of Fractional Order in Variable Structure Control,” Comput. Math. Appl., 64(10), pp. 3340–3350. [CrossRef]
Efe, M. , 2012, “ Application of Backstepping Control Technique to Fractional Order Dynamic Systems,” Fractional Dynamics and Control, Springer, New York, NY, pp. 33–47.
Tenreiro Machado, J. A. , 1997, “ Analysis and Design of Fractional-Order Digital Control Systems,” Syst. Anal. Model. Simul., 27(2–3), pp. 107–122. http://dl.acm.org/citation.cfm?id=255030.255034
Liao, Z. , Peng, C. , Li, W. , and Wang, Y. , 2011, “ Robust Stability Analysis for a Class of Fractional Order Systems With Uncertain Parameters,” J. Franklin Inst., 348(6), pp. 1101–1113. [CrossRef]
Lu, J. G. , and Chen, G. R. , 2009, “ Robust Stability and Stabilization of Fractional-Order Interval Systems: An LMI Approach,” IEEE Trans. Autom. Control, 54(6), pp. 1294–1299. [CrossRef]
Lu, J. G. , and Chen, Y. Q. , 2010, “ Robust Stability and Stabilization of Fractional-Order Interval Systems With the Fractional Order α: the 0<α<1 Case,” IEEE Trans. Autom. Control, 55(1), pp. 152–158.
Chevrie, M. , Sabatier, J. , Farges, C. , and Malti, R. , 2015, “ H2 Norm of a Class of Fractional Transfer Functions Suited for Modeling Diffusive Phenomena,” American Control Conference, Chicago, IL, pp. 2199–2204.
Yin, C. , Chen, Y. Q. , and Zhong, S. M. , 2014, “ Fractional-Order Sliding Mode Based Extremum Seeking Control of a Class of Nonlinear Systems,” Automatica, 50(12), pp. 3173–3181. [CrossRef]
Binazadeh, T. , and Shafiei, M. H. , 2013, “ Output Tracking of Uncertain Fractional-Order Nonlinear Systems Via a Novel Fractional-Order Sliding Mode Approach,” Mechatronics, 23(7), pp. 888–892. [CrossRef]
Bettayeb, M. , and Djennoune, S. , 2016, “ Design of Sliding Mode Controllers for Nonlinear Fractional-Order Systems Via Diffusive Representation,” Nonlinear Dyn., 84(2), pp. 593–605. [CrossRef]
Xu, Y. , Wang, H. , Liu, D. , and Huang, H. , 2015, “ Sliding Mode Control of a Class of Fractional Chaotic Systems in the Presence of Parameter Perturbations,” J. Vib. Control, 21(3), pp. 435–448. [CrossRef]
Bijnan, B. , and Kamal, S. , 2015, Stabilization and Control of Fractional Order Systems: A Sliding Mode Approach, Springer, Berlin.
Dadras, S. , and Momeni, H. R. , 2014, “ Fractional Order Dynamic Output Feedback Sliding Mode Control Design for Robust Stabilization of Uncertain Fractional Nonlinear Systems,” Asian J. Control, 16(2), pp. 489–497. [CrossRef]
Faieghi, M. R. , Delavari, H. , and Baleanu, D. , 2013, “ A Note on Stability of Sliding Mode Dynamics in Suppression of Fractional-Order Chaotic Systems,” Comput. Math. Appl., 66(5), pp. 832–837. [CrossRef]
Lim, Y. H. , Oh, K. K. H. , and Ahn, S. , 2013, “ Stability and Stabilization of Fractional-Order Linear Systems Subject to Input Saturation,” IEEE Trans. Autom. Control, 58(4), pp. 1062–1067. [CrossRef]
Alaviyan Shahri, E. S. , Alfi, A. , and Tenreiro Machado, J. A. , 2015, “ An Extension of Estimation of Domain of Attraction for Fractional Order Linear System Subject to Saturation Control,” Appl. Math. Lett., 47, pp. 26–34. [CrossRef]
Alaviyan Shahri, E. S. , and Balochian, S. , 2015, “ A Stability Analysis on Fractional Order Linear System With Nonlinear Saturated Disturbance,” Natl Acad. Sci. Lett., 38(5), pp. 409–413. [CrossRef]
Alaviyan Shahri, E. S. , and Balochian, S. , 2016, “ An Analysis and Design Method for Fractional-Order Linear Systems Subject to Actuator Saturation and Disturbance,” Opt. Control Appl. Methods, 37(2), pp. 305–322. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Trajectory of the system states for v=0.7

Grahic Jump Location
Fig. 2

Trajectory of the control states for v=0.7

Grahic Jump Location
Fig. 3

Control input profile for v=0.7

Grahic Jump Location
Fig. 4

Sliding surface profile for v=0.7

Grahic Jump Location
Fig. 5

Trajectory of the system states for v=0.9

Grahic Jump Location
Fig. 6

Trajectory of the control states for v=0.9

Grahic Jump Location
Fig. 7

Control input profile for v=0.9

Grahic Jump Location
Fig. 8

Sliding surface profile for v=0.9

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In